Spaces:
Running
Running
import os | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
import threading | |
import app_math as app_math # keeping your existing import | |
# ---- Model setup ---- | |
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
MODEL_ID = "HuggingFaceH4/zephyr-7b-beta" | |
# Automatically map model across available devices (GPU/CPU) | |
tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_ID, | |
token=HF_TOKEN, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
device_map="auto", # << key change | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
low_cpu_mem_usage=True, | |
token=HF_TOKEN, | |
) | |
# Ensure pad token is set | |
if tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
# Build chat messages | |
messages = [{"role": "system", "content": system_message}] | |
for u, a in history: | |
if u: | |
messages.append({"role": "user", "content": u}) | |
if a: | |
messages.append({"role": "assistant", "content": a}) | |
messages.append({"role": "user", "content": message}) | |
# Tokenize with Zephyr's chat template | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_tensors="pt", | |
).to(model.device) | |
# Stream generation | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = { | |
"inputs": inputs, | |
"max_new_tokens": int(max_tokens), | |
"do_sample": True, | |
"temperature": float(temperature), | |
"top_p": float(top_p), | |
"eos_token_id": tokenizer.eos_token_id, | |
"pad_token_id": tokenizer.pad_token_id, | |
"streamer": streamer, | |
} | |
thread = threading.Thread(target=model.generate, kwargs=gen_kwargs) | |
thread.start() | |
partial = "" | |
for new_text in streamer: | |
partial += new_text | |
yield partial | |
# ---- Gradio UI ---- | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |