AbrahamicSolver / app.py
Gatsby767's picture
Update app.py
d86b11c verified
raw
history blame
2.63 kB
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import threading
import app_math as app_math # keeping your existing import
# ---- Model setup ----
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
MODEL_ID = "HuggingFaceH4/zephyr-7b-beta"
# Automatically map model across available devices (GPU/CPU)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
token=HF_TOKEN,
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto", # << key change
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
token=HF_TOKEN,
)
# Ensure pad token is set
if tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
# Build chat messages
messages = [{"role": "system", "content": system_message}]
for u, a in history:
if u:
messages.append({"role": "user", "content": u})
if a:
messages.append({"role": "assistant", "content": a})
messages.append({"role": "user", "content": message})
# Tokenize with Zephyr's chat template
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
).to(model.device)
# Stream generation
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {
"inputs": inputs,
"max_new_tokens": int(max_tokens),
"do_sample": True,
"temperature": float(temperature),
"top_p": float(top_p),
"eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.pad_token_id,
"streamer": streamer,
}
thread = threading.Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
partial = ""
for new_text in streamer:
partial += new_text
yield partial
# ---- Gradio UI ----
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()