Spaces:
Running
Running
File size: 8,819 Bytes
7603b2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import streamlit as st
import json
import pandas as pd
from huggingface_hub import hf_hub_download
import plotly.express as px
st.set_page_config(
page_title="PhytoAI Assistant",
page_icon="πΏ",
layout="wide"
)
@st.cache_data
def load_phytoai_data():
"""Load PhytoAI data from HF dataset"""
try:
dataset_path = hf_hub_download(
repo_id="Gatescrispy/phytoai-mega-dataset",
filename="mega_final_dataset.json",
repo_type="dataset"
)
with open(dataset_path, 'r') as f:
return json.load(f)
except Exception as e:
st.error(f"Data loading error: {e}")
return None
def main():
st.title("πΏ PhytoAI Assistant")
st.markdown("### AI Assistant for Phytotherapy Research")
st.markdown("---")
# Load data
with st.spinner("Loading PhytoAI data..."):
data = load_phytoai_data()
if data is None:
st.error("β Unable to load PhytoAI data")
st.info("The dataset will be available once uploaded to Hugging Face")
# Demo data
st.subheader("π PhytoAI Dataset Preview")
st.write("**Dataset content:**")
st.write("β’ 352 unique natural compounds")
st.write("β’ 1,314 documented bioactivities")
st.write("β’ Sources: PubChem, ChEMBL, scientific literature")
return
# Search interface
st.sidebar.header("π Compound Search")
search_type = st.sidebar.selectbox(
"Search type:",
["Compound name", "Therapeutic activity"]
)
if search_type == "Compound name":
compound_search = st.sidebar.text_input(
"Compound name",
placeholder="curcumin, resveratrol, quercetin..."
)
if compound_search:
search_compounds_by_name(data, compound_search)
elif search_type == "Therapeutic activity":
activity_search = st.sidebar.selectbox(
"Select an activity:",
["", "anti-inflammatory", "antioxidant", "cardiovascular",
"neuroprotective", "anti-cancer", "antimicrobial"]
)
if activity_search:
search_by_therapeutic_activity(data, activity_search)
# Main statistics
display_main_statistics(data)
# Visualizations
create_visualizations(data)
# Footer
st.markdown("---")
st.markdown("**πΏ PhytoAI** - AI Assistant for Phytotherapy Research")
st.markdown("π [PhytoAI Dataset](https://huggingface.co/datasets/Gatescrispy/phytoai-mega-dataset) | π¬ Research & Development")
def search_compounds_by_name(data, search_term):
"""Search by compound name"""
st.subheader(f"π Results for '{search_term}'")
results = []
for compound_id, compound_data in data.items():
compound_name = compound_data.get('compound_name', '').lower()
if search_term.lower() in compound_name:
results.append((compound_id, compound_data))
if results:
for compound_id, compound_data in results[:5]:
with st.expander(f"𧬠{compound_data.get('compound_name', 'Unknown compound')}"):
col1, col2 = st.columns(2)
with col1:
st.write("**Molecular Properties:**")
st.write(f"β’ Formula: `{compound_data.get('molecular_formula', 'N/A')}`")
st.write(f"β’ SMILES: `{compound_data.get('smiles', 'N/A')}`")
st.write(f"β’ PubChem CID: `{compound_data.get('pubchem_cid', 'N/A')}`")
with col2:
st.write("**Bioactivities:**")
bioactivities = compound_data.get('bioactivities', [])
for i, activity in enumerate(bioactivities[:5]):
st.write(f"β’ {activity.get('activity_type', 'N/A')}")
if i >= 4 and len(bioactivities) > 5:
st.write(f"... and {len(bioactivities) - 5} others")
break
else:
st.info("No compounds found for this search")
def search_by_therapeutic_activity(data, activity_type):
"""Search by therapeutic activity"""
st.subheader(f"π― Compounds with activity: {activity_type}")
matching_compounds = []
for compound_id, compound_data in data.items():
bioactivities = compound_data.get('bioactivities', [])
for activity in bioactivities:
if activity_type.lower() in activity.get('activity_type', '').lower():
matching_compounds.append({
'Compound': compound_data.get('compound_name', 'N/A'),
'Formula': compound_data.get('molecular_formula', 'N/A'),
'Activity': activity.get('activity_type', 'N/A'),
'CID': compound_data.get('pubchem_cid', 'N/A')
})
break
if matching_compounds:
df = pd.DataFrame(matching_compounds)
st.dataframe(df, use_container_width=True)
st.info(f"π {len(matching_compounds)} compounds found with this activity")
else:
st.warning("No compounds found for this activity")
def display_main_statistics(data):
"""Display main statistics"""
st.header("π PhytoAI Dataset Statistics")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("𧬠Total compounds", len(data))
with col2:
total_bioactivities = sum(len(comp.get('bioactivities', [])) for comp in data.values())
st.metric("π¬ Total bioactivities", f"{total_bioactivities:,}")
with col3:
therapeutic_areas = set()
for compound_data in data.values():
for activity in compound_data.get('bioactivities', []):
activity_type = activity.get('activity_type', '').lower()
if any(term in activity_type for term in ['anti-inflammatory', 'antioxidant', 'cardiovascular', 'neuroprotective', 'anti-cancer', 'antimicrobial']):
therapeutic_areas.add(activity_type.split()[0] if activity_type else 'unknown')
st.metric("π― Therapeutic areas", len(therapeutic_areas))
with col4:
compounds_with_pubchem = sum(1 for comp in data.values() if comp.get('pubchem_cid'))
coverage = (compounds_with_pubchem / len(data)) * 100
st.metric("π PubChem coverage", f"{coverage:.1f}%")
def create_visualizations(data):
"""Create interactive visualizations"""
st.header("π Interactive Visualizations")
# Therapeutic activity analysis
activity_counts = {}
for compound_data in data.values():
for activity in compound_data.get('bioactivities', []):
activity_type = activity.get('activity_type', '').lower()
# Categorize activities
if 'anti-inflammatory' in activity_type:
activity_counts['Anti-inflammatory'] = activity_counts.get('Anti-inflammatory', 0) + 1
elif 'antioxidant' in activity_type:
activity_counts['Antioxidant'] = activity_counts.get('Antioxidant', 0) + 1
elif 'cardiovascular' in activity_type:
activity_counts['Cardiovascular'] = activity_counts.get('Cardiovascular', 0) + 1
elif 'neuroprotective' in activity_type:
activity_counts['Neuroprotective'] = activity_counts.get('Neuroprotective', 0) + 1
elif 'anti-cancer' in activity_type or 'anticancer' in activity_type:
activity_counts['Anti-cancer'] = activity_counts.get('Anti-cancer', 0) + 1
elif 'antimicrobial' in activity_type:
activity_counts['Antimicrobial'] = activity_counts.get('Antimicrobial', 0) + 1
if activity_counts:
col1, col2 = st.columns(2)
with col1:
# Bar chart
fig_bar = px.bar(
x=list(activity_counts.keys()),
y=list(activity_counts.values()),
title="Distribution of Therapeutic Activities",
labels={'x': 'Activity Type', 'y': 'Number of Compounds'},
color=list(activity_counts.values()),
color_continuous_scale="Viridis"
)
fig_bar.update_layout(showlegend=False)
st.plotly_chart(fig_bar, use_container_width=True)
with col2:
# Pie chart
fig_pie = px.pie(
values=list(activity_counts.values()),
names=list(activity_counts.keys()),
title="Therapeutic Areas Distribution"
)
st.plotly_chart(fig_pie, use_container_width=True)
if __name__ == "__main__":
main()
|