import gradio as gr import requests from PIL import Image import base64 from io import BytesIO def query_hf_image_generation(api_key, prompt): API_URL = f"https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } data = { "inputs": prompt } # Make the request response = requests.post(API_URL, headers=headers, json=data) # Check if the response was successful if response.status_code != 200: return f"Error: Received status code {response.status_code} with message: {response.text}" # Try parsing JSON response try: result = response.json() except ValueError as e: return f"Error decoding JSON: {e}" # Debug output to diagnose the structure of the returned 'result' print("DEBUG:", result) # Check if the API response contains an error message. if 'error' in result: return f"Error: {result['error']}" # Assuming the API returns an image in base64 format. if 'data' in result: try: base64_image = result['data'][0] base64_data = base64_image.split(',')[1] if ',' in base64_image else base64_image image_bytes = base64.b64decode(base64_data) image = Image.open(BytesIO(image_bytes)) return image except Exception as e: return f"Error processing image data: {e}" else: return "Error: 'data' not found in response." iface = gr.Interface( fn=query_hf_image_generation, inputs=[ gr.Textbox(label="Hugging Face API Key", placeholder="Enter your Hugging Face API Key here..."), gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt") ], outputs=gr.Image(label="Generated Image"), title="Stable Diffusion XL Image Generator", description="Enter your API Key and a prompt to generate an image using the Stable Diffusion XL model from Hugging Face." ) iface.launch()