Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# Model name
|
5 |
+
model_name = "MONAI/Llama3-VILA-M3-8B"
|
6 |
+
|
7 |
+
# Load tokenizer and model with trust_remote_code=True
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
model_name,
|
11 |
+
torch_dtype=torch.float16, # Use float16 for optimized inference
|
12 |
+
device_map="auto", # Automatically assigns model to available GPU/CPU
|
13 |
+
trust_remote_code=True # Allows loading custom model code if needed
|
14 |
+
)
|
15 |
+
|
16 |
+
# Example input prompt
|
17 |
+
prompt = "Explain the findings in this chest X-ray report:"
|
18 |
+
|
19 |
+
# Tokenize input
|
20 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
|
22 |
+
# Generate response
|
23 |
+
with torch.no_grad():
|
24 |
+
output = model.generate(**inputs, max_length=200)
|
25 |
+
|
26 |
+
# Decode and print response
|
27 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
28 |
+
print("\nGenerated Response:\n", response)
|