File size: 7,187 Bytes
7304960
4133628
902cd01
7f95fc6
902cd01
 
 
7f95fc6
8c9cc75
 
902cd01
 
 
079cf4d
902cd01
 
 
 
 
85071eb
7f95fc6
8c9cc75
079cf4d
 
 
7f95fc6
079cf4d
902cd01
 
 
 
079cf4d
902cd01
 
 
 
 
 
 
 
 
 
 
 
079cf4d
7f95fc6
902cd01
079cf4d
 
902cd01
079cf4d
 
902cd01
 
 
 
 
 
079cf4d
 
 
 
7f95fc6
902cd01
079cf4d
902cd01
 
079cf4d
902cd01
 
7304960
902cd01
 
079cf4d
 
902cd01
079cf4d
 
902cd01
 
079cf4d
 
902cd01
079cf4d
 
 
7304960
902cd01
079cf4d
7304960
902cd01
7304960
079cf4d
7f95fc6
079cf4d
 
 
 
7f95fc6
079cf4d
 
7f95fc6
079cf4d
7304960
079cf4d
7304960
85071eb
079cf4d
 
 
 
7304960
7f95fc6
7304960
 
 
 
 
 
 
 
85071eb
079cf4d
902cd01
 
 
 
7304960
85071eb
 
902cd01
079cf4d
7f95fc6
902cd01
 
7304960
 
902cd01
 
 
 
079cf4d
902cd01
 
079cf4d
902cd01
7f95fc6
079cf4d
7304960
85071eb
079cf4d
7304960
7f95fc6
85071eb
7304960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
902cd01
 
7304960
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#app.py
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
from IndicTransToolkit.processor import IndicProcessor
import requests
from datetime import datetime
import tempfile
from gtts import gTTS
import os

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Load models
model_en_to_indic = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True).to(DEVICE)
tokenizer_en_to_indic = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True)
model_indic_to_en = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True).to(DEVICE)
tokenizer_indic_to_en = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True)

ip = IndicProcessor(inference=True)
asr = pipeline("automatic-speech-recognition", model="openai/whisper-small")

# --- Supabase settings ---
SUPABASE_URL = "https://gptmdbhzblfybdnohqnh.supabase.co"
SUPABASE_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..."

# --- Supabase utilities ---
def save_to_supabase(input_text, output_text, direction):
    if not input_text.strip() or not output_text.strip():
        return "Nothing to save."

    table = "translations" if direction == "en_to_ks" else "ks_to_en_translations"
    payload = {
        "timestamp": datetime.utcnow().isoformat(),
        "input_text": input_text,
        "output_text": output_text
    }
    headers = {
        "apikey": SUPABASE_API_KEY,
        "Authorization": f"Bearer {SUPABASE_API_KEY}",
        "Content-Type": "application/json"
    }

    try:
        response = requests.post(f"{SUPABASE_URL}/rest/v1/{table}", json=payload, headers=headers)
        return "βœ… Saved successfully!" if response.status_code == 201 else "❌ Failed to save."
    except Exception as e:
        print("Save error:", e)
        return "❌ Save error."

def get_translation_history(direction):
    table = "translations" if direction == "en_to_ks" else "ks_to_en_translations"
    headers = {
        "apikey": SUPABASE_API_KEY,
        "Authorization": f"Bearer {SUPABASE_API_KEY}"
    }

    try:
        res = requests.get(f"{SUPABASE_URL}/rest/v1/{table}?order=timestamp.desc&limit=10", headers=headers)
        if res.status_code == 200:
            data = res.json()
            return "\n\n".join([f"Input: {r['input_text']} β†’ Output: {r['output_text']}" for r in data])
        return "Failed to load history."
    except Exception as e:
        print("History error:", e)
        return "Error loading history."

# --- Translation ---
def translate(text, direction):
    if not text.strip():
        return "Enter some text.", None

    if direction == "en_to_ks":
        src_lang, tgt_lang = "eng_Latn", "kas_Arab"
        model, tokenizer = model_en_to_indic, tokenizer_en_to_indic
    else:
        src_lang, tgt_lang = "kas_Arab", "eng_Latn"
        model, tokenizer = model_indic_to_en, tokenizer_indic_to_en

    try:
        batch = ip.preprocess_batch([text], src_lang=src_lang, tgt_lang=tgt_lang)
        tokens = tokenizer(batch, return_tensors="pt", padding=True).to(DEVICE)
        with torch.no_grad():
            output = model.generate(**tokens, max_length=256, num_beams=5)
        result = tokenizer.batch_decode(output, skip_special_tokens=True)
        final = ip.postprocess_batch(result, lang=tgt_lang)[0]
        return final, None
    except Exception as e:
        print("Translation error:", e)
        return "⚠️ Translation failed.", None

# --- TTS for English output ---
def synthesize_tts(text):
    try:
        tts = gTTS(text=text, lang="en")
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            tts.save(f.name)
            return f.name
    except Exception as e:
        print("TTS error:", e)
        return None

# --- STT only for en_to_ks ---
def generate_stt_for_input(audio_path, direction):
    if direction != "en_to_ks":
        return "⚠️ Audio input is only supported for English to Kashmiri.", "", None

    try:
        transcription = asr(audio_path)["text"]
    except Exception as e:
        print("STT error:", e)
        return "⚠️ Transcription failed.", "", None

    translated, _ = translate(transcription, direction)
    return transcription, translated, None

# --- Generate TTS for English output ---
def generate_tts_for_output(output_text, direction):
    if direction == "ks_to_en" and output_text.strip():
        return synthesize_tts(output_text)
    return None

# --- Switch UI direction ---
def switch_direction(direction, input_text_val, output_text_val):
    new_direction = "ks_to_en" if direction == "en_to_ks" else "en_to_ks"
    input_label = "Kashmiri Text" if new_direction == "ks_to_en" else "English Text"
    output_label = "English Translation" if new_direction == "ks_to_en" else "Kashmiri Translation"
    return new_direction, gr.update(value=output_text_val, label=input_label), gr.update(value=input_text_val, label=output_label), None

# === Gradio Interface ===
with gr.Blocks() as interface:
    gr.HTML("<h2 style='text-align:center;'>English ↔ Kashmiri Translator</h2>")
    translation_direction = gr.State(value="en_to_ks")

    with gr.Row():
        input_text = gr.Textbox(label="English Text", placeholder="Enter text here...", lines=2)
        output_text = gr.Textbox(label="Kashmiri Translation", placeholder="Translated text...", lines=2)

    with gr.Row():
        translate_button = gr.Button("Translate")
        save_button = gr.Button("Save Translation")
        switch_button = gr.Button("Switch Direction")

    save_status = gr.Textbox(label="Save Status", interactive=False)
    history = gr.Textbox(label="Translation History", lines=8, interactive=False)

    with gr.Row():
        audio_input = gr.Audio(type="filepath", label="πŸŽ™οΈ Record English audio")
        audio_output = gr.Audio(label="πŸ”Š English TTS", interactive=False)

    stt_button = gr.Button("🎀 Transcribe & Translate (EN β†’ KS Only)")
    tts_button = gr.Button("πŸ”Š Generate English Speech (KS β†’ EN Only)")

    # Events
    translate_button.click(
        fn=translate,
        inputs=[input_text, translation_direction],
        outputs=[output_text, audio_output]
    )
    
    tts_button.click(
        fn=generate_tts_for_output,
        inputs=[output_text, translation_direction],
        outputs=audio_output
    )

    save_button.click(
        fn=save_to_supabase,
        inputs=[input_text, output_text, translation_direction],
        outputs=save_status
    ).then(
        fn=get_translation_history,
        inputs=translation_direction,
        outputs=history
    )

    switch_button.click(
        fn=switch_direction,
        inputs=[translation_direction, input_text, output_text],
        outputs=[translation_direction, input_text, output_text, audio_output]
    )

    stt_button.click(
        fn=generate_stt_for_input,
        inputs=[audio_input, translation_direction],
        outputs=[input_text, output_text, audio_output]
    )

if __name__ == "__main__":
    interface.queue().launch(share=True)