Spaces:
Sleeping
Sleeping
File size: 8,125 Bytes
4133628 902cd01 7f95fc6 902cd01 7f95fc6 8c9cc75 902cd01 8c9cc75 7f95fc6 902cd01 7f95fc6 902cd01 8c9cc75 7f95fc6 8c9cc75 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 8c9cc75 7f95fc6 8c9cc75 7f95fc6 8c9cc75 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 902cd01 7f95fc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import gradio as gr
print("Gradio version:", gr.__version__)
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
from IndicTransToolkit.processor import IndicProcessor
import gradio as gr
import requests
from datetime import datetime
import tempfile
from gtts import gTTS
import os
# Supabase configuration
SUPABASE_URL = "https://gptmdbhzblfybdnohqnh.supabase.co"
SUPABASE_API_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImdwdG1kYmh6YmxmeWJkbm9ocW5oIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NDc0NjY1NDgsImV4cCI6MjA2MzA0MjU0OH0.CfWArts6Kd_x7Wj0a_nAyGJfrFt8F7Wdy_MdYDj9e7U"
SUPABASE_TABLE = "translations"
# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load translation models
model_en_to_indic = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True).to(DEVICE)
tokenizer_en_to_indic = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True)
model_indic_to_en = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True).to(DEVICE)
tokenizer_indic_to_en = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-1B", trust_remote_code=True)
ip = IndicProcessor(inference=True)
# Whisper STT pipeline (keep as is)
asr = pipeline("automatic-speech-recognition", model="openai/whisper-small")
# Save to Supabase
def save_to_supabase(input_text, output_text, direction):
if not input_text.strip() or not output_text.strip():
return "Nothing to save."
table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations"
payload = {
"timestamp": datetime.utcnow().isoformat(),
"input_text": input_text,
"output_text": output_text
}
headers = {
"apikey": SUPABASE_API_KEY,
"Authorization": f"Bearer {SUPABASE_API_KEY}",
"Content-Type": "application/json"
}
try:
response = requests.post(
f"{SUPABASE_URL}/rest/v1/{table_name}",
headers=headers,
json=payload,
timeout=10
)
return "β
Saved successfully!" if response.status_code == 201 else "β Failed to save."
except Exception as e:
print("SAVE EXCEPTION:", e)
return "β Save request error."
# Fetch translation history
def get_translation_history(direction="en_to_ks"):
table_name = "translations" if direction == "en_to_ks" else "ks_to_en_translations"
headers = {
"apikey": SUPABASE_API_KEY,
"Authorization": f"Bearer {SUPABASE_API_KEY}"
}
try:
response = requests.get(
f"{SUPABASE_URL}/rest/v1/{table_name}?order=timestamp.desc&limit=10",
headers=headers,
timeout=10
)
if response.status_code == 200:
records = response.json()
return "\n\n".join(
[f"Input: {r['input_text']} β Output: {r['output_text']}" for r in records]
)
return "Failed to load history."
except Exception as e:
print("HISTORY FETCH ERROR:", e)
return "Error loading history."
# Translation function
def translate(text, direction):
if not text.strip():
return "Please enter some text.", gr.update(), gr.update()
if direction == "en_to_ks":
src_lang = "eng_Latn"
tgt_lang = "kas_Arab"
model = model_en_to_indic
tokenizer = tokenizer_en_to_indic
else:
src_lang = "kas_Arab"
tgt_lang = "eng_Latn"
model = model_indic_to_en
tokenizer = tokenizer_indic_to_en
try:
processed = ip.preprocess_batch([text], src_lang=src_lang, tgt_lang=tgt_lang)
batch = tokenizer(processed, return_tensors="pt", padding=True).to(DEVICE)
with torch.no_grad():
outputs = model.generate(
**batch,
max_length=256,
num_beams=5,
num_return_sequences=1
)
translated = tokenizer.batch_decode(outputs, skip_special_tokens=True)
result = ip.postprocess_batch(translated, lang=tgt_lang)[0]
return result, gr.update(), gr.update()
except Exception as e:
print("Translation Error:", e)
return "β οΈ Translation failed.", gr.update(), gr.update()
# Transcribe English audio
def transcribe_audio(audio_path):
try:
result = asr(audio_path)
return result["text"]
except Exception as e:
print("STT Error:", e)
return "β οΈ Transcription failed."
# Synthesize English TTS using gTTS for ks_to_en direction
def synthesize_tts(text, direction):
if direction == "ks_to_en" and text.strip():
try:
tts = gTTS(text=text, lang="en")
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(tmp_file.name)
tmp_file.close()
return tmp_file.name
except Exception as e:
print("TTS Error:", e)
return None
# Direction switch
def switch_direction(direction, input_text_val, output_text_val):
new_direction = "ks_to_en" if direction == "en_to_ks" else "en_to_ks"
input_label = "Kashmiri Text" if new_direction == "ks_to_en" else "English Text"
output_label = "English Translation" if new_direction == "ks_to_en" else "Kashmiri Translation"
return (
new_direction,
gr.update(value=output_text_val, label=input_label),
gr.update(value=input_text_val, label=output_label)
)
# Gradio interface
with gr.Blocks() as interface:
gr.HTML("""
<div style="display: flex; justify-content: space-between; align-items: center; padding: 10px;">
<img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/211321a234613a9c3dd944fe9367cf13d1386239/assets/left_logo.png" style="height:150px; width:auto;">
<h2 style="margin: 0; text-align: center;">English β Kashmiri Translator</h2>
<img src="https://raw.githubusercontent.com/BurhaanRasheedZargar/Images/77797f7f7cbee328fa0f9d31cf3e290441e04cd3/assets/right_logo.png">
</div>
""")
translation_direction = gr.State(value="en_to_ks")
with gr.Row():
input_text = gr.Textbox(lines=2, label="English Text", placeholder="Enter text....")
output_text = gr.Textbox(lines=2, label="Kashmiri Translation", placeholder="Translated text....")
with gr.Row():
translate_button = gr.Button("Translate")
save_button = gr.Button("Save Translation")
switch_button = gr.Button("Switch")
save_status = gr.Textbox(label="Save Status", interactive=False)
history_box = gr.Textbox(lines=10, label="Translation History", interactive=False)
with gr.Row():
audio_input = gr.Audio(source="microphone", type="filepath", label="ποΈ Speak in English")
audio_output = gr.Audio(label="π English Output Audio")
stt_translate_button = gr.Button("π€ Transcribe & Translate")
# Click events
translate_button.click(
fn=translate,
inputs=[input_text, translation_direction],
outputs=[output_text, input_text, output_text]
)
save_button.click(
fn=save_to_supabase,
inputs=[input_text, output_text, translation_direction],
outputs=save_status
).then(
fn=get_translation_history,
inputs=translation_direction,
outputs=history_box
)
switch_button.click(
fn=switch_direction,
inputs=[translation_direction, input_text, output_text],
outputs=[translation_direction, input_text, output_text]
)
stt_translate_button.click(
fn=transcribe_audio,
inputs=audio_input,
outputs=input_text
).then(
fn=translate,
inputs=[input_text, translation_direction],
outputs=[output_text, input_text, output_text]
).then(
fn=synthesize_tts,
inputs=[output_text, translation_direction],
outputs=audio_output
)
if __name__ == "__main__":
interface.queue().launch()
|