Spaces:
Sleeping
Sleeping
File size: 6,540 Bytes
c79133e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import torch
import numpy as np
from PIL import Image
import argparse
import os
from diffusers import FluxTransformer2DModel, FluxPipeline
from transformers import T5EncoderModel, CLIPTextModel
from diffusers import FluxInpaintPipeline, AutoencoderKL
from diffusers.hooks import apply_group_offloading
from src.pipeline_tryon import FluxTryonPipeline, crop_to_multiple_of_16, resize_and_pad_to_size, resize_by_height
def load_models(model_path, lora_name=None, device="cuda", torch_dtype=torch.bfloat16, group_offloading=False):
text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="text_encoder", torch_dtype=torch_dtype)
text_encoder_2 = T5EncoderModel.from_pretrained(model_path, subfolder="text_encoder_2", torch_dtype=torch_dtype)
transformer = FluxTransformer2DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=torch_dtype)
vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae", torch_dtype=torch_dtype)
pipe = FluxTryonPipeline.from_pretrained(
model_path,
transformer=transformer,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
torch_dtype=torch_dtype,
)
pipe.enable_attention_slicing()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
if lora_name is not None:
pipe.enable_model_cpu_offload()
pipe.load_lora_weights(
"loooooong/Any2anyTryon",
weight_name=lora_name,
adapter_name="tryon",
)
pipe.remove_all_hooks()
if group_offloading:
# https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux#group-offloading
apply_group_offloading(
pipe.transformer,
offload_type="leaf_level",
offload_device=torch.device("cpu"),
onload_device=torch.device(device),
use_stream=True,
)
apply_group_offloading(
pipe.text_encoder,
offload_device=torch.device("cpu"),
onload_device=torch.device(device),
offload_type="leaf_level",
use_stream=True,
)
apply_group_offloading(
pipe.text_encoder_2,
offload_device=torch.device("cpu"),
onload_device=torch.device(device),
offload_type="leaf_level",
use_stream=True,
)
apply_group_offloading(
pipe.vae,
offload_device=torch.device("cpu"),
onload_device=torch.device(device),
offload_type="leaf_level",
use_stream=True,
)
pipe.to(device=device)
return pipe
@torch.no_grad()
def generate_image(pipe, model_image_path, garment_image_path, prompt="", height=512, width=384,
seed=0, guidance_scale=3.5, num_inference_steps=30):
height, width = int(height), int(width)
width = width - (width % 16)
height = height - (height % 16)
concat_image_list = [Image.fromarray(np.zeros((height, width, 3), dtype=np.uint8))]
has_model_image = model_image_path is not None
has_garment_image = garment_image_path is not None
if has_model_image:
model_image = Image.open(model_image_path)
if has_garment_image:
input_height, input_width = model_image.size[1], model_image.size[0]
model_image, lp, tp, rp, bp = resize_and_pad_to_size(model_image, width, height)
else:
model_image = resize_by_height(model_image, height)
concat_image_list.append(model_image)
if has_garment_image:
garment_image = Image.open(garment_image_path)
garment_image = resize_by_height(garment_image, height)
concat_image_list.append(garment_image)
image = Image.fromarray(np.concatenate([np.array(img) for img in concat_image_list], axis=1))
mask = np.zeros_like(np.array(image))
mask[:,:width] = 255
mask_image = Image.fromarray(mask)
image = pipe(
prompt,
image=image,
mask_image=mask_image,
strength=1.,
height=height,
width=image.width,
target_width=width,
tryon=has_model_image and has_garment_image,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(seed),
output_type="pil",
).images[0]
if has_model_image and has_garment_image:
image = image.crop((lp, tp, image.width-rp, image.height-bp)).resize((input_width, input_height))
return image
def main():
parser = argparse.ArgumentParser(description='Virtual Try-on Image Generation')
parser.add_argument('--model_path', type=str, default="black-forest-labs/FLUX.1-dev", help='Path to the model')
parser.add_argument('--lora_name', type=str, default="dev_lora_any2any_alltasks.safetensors", help='choose from dev_lora_any2any_alltasks.safetensors, dev_lora_any2any_tryon.safetensors and dev_lora_garment_reconstruction.safetensors')
parser.add_argument('--model_image', type=str, help='Path to the model image')
parser.add_argument('--garment_image', type=str, help='Path to the garment image')
parser.add_argument('--prompt', type=str, default="")
parser.add_argument('--height', type=int, default=576)
parser.add_argument('--width', type=int, default=576)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--guidance_scale', type=float, default=3.5)
parser.add_argument('--num_inference_steps', type=int, default=30)
parser.add_argument('--output_path', type=str, default='./results/output.png')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--group_offloading', action="store_true")
args = parser.parse_args()
pipe = load_models(args.model_path, lora_name=args.lora_name, device=args.device,group_offloading=args.group_offloading)
output_image = generate_image(
pipe=pipe,
model_image_path=args.model_image,
garment_image_path=args.garment_image,
prompt=args.prompt,
height=args.height,
width=args.width,
seed=args.seed,
guidance_scale=args.guidance_scale,
num_inference_steps=args.num_inference_steps
)
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
output_image.save(args.output_path)
print(f"Generated image saved to {args.output_path}")
if __name__ == "__main__":
main() |