File size: 6,540 Bytes
c79133e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import numpy as np
from PIL import Image
import argparse
import os

from diffusers import FluxTransformer2DModel, FluxPipeline
from transformers import T5EncoderModel, CLIPTextModel
from diffusers import FluxInpaintPipeline, AutoencoderKL
from diffusers.hooks import apply_group_offloading
from src.pipeline_tryon import FluxTryonPipeline, crop_to_multiple_of_16, resize_and_pad_to_size, resize_by_height

def load_models(model_path, lora_name=None, device="cuda", torch_dtype=torch.bfloat16, group_offloading=False):
    text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="text_encoder", torch_dtype=torch_dtype)
    text_encoder_2 = T5EncoderModel.from_pretrained(model_path, subfolder="text_encoder_2", torch_dtype=torch_dtype)
    transformer = FluxTransformer2DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=torch_dtype)
    vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae", torch_dtype=torch_dtype)

    pipe = FluxTryonPipeline.from_pretrained(
        model_path,
        transformer=transformer,
        text_encoder=text_encoder,
        text_encoder_2=text_encoder_2,
        vae=vae,
        torch_dtype=torch_dtype,
    )
    pipe.enable_attention_slicing()
    pipe.vae.enable_slicing()
    pipe.vae.enable_tiling()

    if lora_name is not None:
        pipe.enable_model_cpu_offload()
        pipe.load_lora_weights(
            "loooooong/Any2anyTryon",
            weight_name=lora_name,
            adapter_name="tryon",
        )
        pipe.remove_all_hooks()
    
    if group_offloading:
        # https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux#group-offloading
        apply_group_offloading(
            pipe.transformer,
            offload_type="leaf_level",
            offload_device=torch.device("cpu"),
            onload_device=torch.device(device),
            use_stream=True,
        )
        apply_group_offloading(
            pipe.text_encoder, 
            offload_device=torch.device("cpu"),
            onload_device=torch.device(device),
            offload_type="leaf_level",
            use_stream=True,
        )
        apply_group_offloading(
            pipe.text_encoder_2, 
            offload_device=torch.device("cpu"),
            onload_device=torch.device(device),
            offload_type="leaf_level",
            use_stream=True,
        )
        apply_group_offloading(
            pipe.vae, 
            offload_device=torch.device("cpu"),
            onload_device=torch.device(device),
            offload_type="leaf_level",
            use_stream=True,
        )
    pipe.to(device=device)
    return pipe

@torch.no_grad()
def generate_image(pipe, model_image_path, garment_image_path, prompt="", height=512, width=384, 
                  seed=0, guidance_scale=3.5, num_inference_steps=30):
    height, width = int(height), int(width)
    width = width - (width % 16)  
    height = height - (height % 16)

    concat_image_list = [Image.fromarray(np.zeros((height, width, 3), dtype=np.uint8))]
    has_model_image = model_image_path is not None
    has_garment_image = garment_image_path is not None

    if has_model_image:
        model_image = Image.open(model_image_path)
        if has_garment_image:
            input_height, input_width = model_image.size[1], model_image.size[0]
            model_image, lp, tp, rp, bp = resize_and_pad_to_size(model_image, width, height)
        else:
            model_image = resize_by_height(model_image, height)
        concat_image_list.append(model_image)

    if has_garment_image:
        garment_image = Image.open(garment_image_path)
        garment_image = resize_by_height(garment_image, height)
        concat_image_list.append(garment_image)

    image = Image.fromarray(np.concatenate([np.array(img) for img in concat_image_list], axis=1))
    
    mask = np.zeros_like(np.array(image))
    mask[:,:width] = 255
    mask_image = Image.fromarray(mask)
    
    image = pipe(
        prompt,
        image=image,
        mask_image=mask_image,
        strength=1.,
        height=height,
        width=image.width,
        target_width=width,
        tryon=has_model_image and has_garment_image,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        max_sequence_length=512,
        generator=torch.Generator("cpu").manual_seed(seed),
        output_type="pil",
    ).images[0]
    
    if has_model_image and has_garment_image:
        image = image.crop((lp, tp, image.width-rp, image.height-bp)).resize((input_width, input_height))
    
    return image

def main():
    parser = argparse.ArgumentParser(description='Virtual Try-on Image Generation')
    parser.add_argument('--model_path', type=str, default="black-forest-labs/FLUX.1-dev", help='Path to the model')
    parser.add_argument('--lora_name', type=str, default="dev_lora_any2any_alltasks.safetensors", help='choose from dev_lora_any2any_alltasks.safetensors, dev_lora_any2any_tryon.safetensors and dev_lora_garment_reconstruction.safetensors')
    parser.add_argument('--model_image', type=str, help='Path to the model image')
    parser.add_argument('--garment_image', type=str, help='Path to the garment image')
    parser.add_argument('--prompt', type=str, default="")
    parser.add_argument('--height', type=int, default=576)
    parser.add_argument('--width', type=int, default=576)
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--guidance_scale', type=float, default=3.5)
    parser.add_argument('--num_inference_steps', type=int, default=30)
    parser.add_argument('--output_path', type=str, default='./results/output.png')
    parser.add_argument('--device', type=str, default='cuda')
    parser.add_argument('--group_offloading', action="store_true")
    
    args = parser.parse_args()
    
    pipe = load_models(args.model_path, lora_name=args.lora_name, device=args.device,group_offloading=args.group_offloading)
    
    output_image = generate_image(
        pipe=pipe,
        model_image_path=args.model_image,
        garment_image_path=args.garment_image,
        prompt=args.prompt,
        height=args.height,
        width=args.width,
        seed=args.seed,
        guidance_scale=args.guidance_scale,
        num_inference_steps=args.num_inference_steps
    )
    os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
    output_image.save(args.output_path)
    print(f"Generated image saved to {args.output_path}")

if __name__ == "__main__":
    main()