"""Gradio demo application for RusCxnPipe.""" import gradio as gr import logging from typing import List, Dict, Any # Set up logging to avoid cluttering the interface logging.getLogger("transformers").setLevel(logging.WARNING) logging.getLogger("sentence_transformers").setLevel(logging.WARNING) logging.getLogger("torch").setLevel(logging.WARNING) try: from ruscxnpipe import RusCxnPipe, SpanPredictor except ImportError: # For development/testing when library isn't installed import sys import os sys.path.append( os.path.dirname( os.path.dirname( os.path.abspath(__file__)))) from ruscxnpipe import RusCxnPipe, SpanPredictor # Initialize models at startup print("🚀 Initializing RusCxnPipe models...") try: PIPELINE = RusCxnPipe( semantic_model="Futyn-Maker/ruscxn-embedder", classification_model="Futyn-Maker/ruscxn-classifier", span_model="Futyn-Maker/ruscxn-span-predictor" ) SPAN_PREDICTOR = SpanPredictor( model_name="Futyn-Maker/ruscxn-span-predictor") print("✅ Models initialized successfully!") MODELS_LOADED = True MODEL_ERROR = None except Exception as e: print(f"❌ Error initializing models: {str(e)}") PIPELINE = None SPAN_PREDICTOR = None MODELS_LOADED = False MODEL_ERROR = str(e) def highlight_span( text: str, span_start: int, span_end: int, span_string: str) -> str: """Highlight a span in text using HTML.""" if span_start < 0 or span_end > len(text) or span_start >= span_end: return text # Ensure the span matches actual_span = text[span_start:span_end] if actual_span.strip() != span_string.strip(): # Fallback: try to find the span in the text span_start = text.find(span_string) if span_start >= 0: span_end = span_start + len(span_string) else: return text # Create highlighted version before = text[:span_start] highlighted = text[span_start:span_end] after = text[span_end:] return f'{before}{highlighted}{after}' def create_construction_link(construction_id: str, pattern: str) -> str: """Create a clickable link to the construction page.""" url = f"https://constructicon.ruscorpora.ru/construction/{construction_id}" return f'{pattern}' def format_pipeline_results(results: Dict[str, Any]) -> str: """Format the pipeline results as HTML.""" if not results or not results['constructions']: return "
No constructions found in the text.
" constructions = results['constructions'] original_text = results['example'] html_parts = [] html_parts.append("
") # Header html_parts.append( "

Found {} construction(s):

".format( len(constructions))) # Process each construction for i, construction in enumerate(constructions, 1): construction_id = construction['id'] pattern = construction['pattern'] span_info = construction['span'] # Construction header with link html_parts.append( "
") html_parts.append( f"

{i}. {create_construction_link(construction_id, pattern)}

") # Highlighted text if span_info['span_string']: highlighted_text = highlight_span( original_text, span_info['span_start'], span_info['span_end'], span_info['span_string'] ) html_parts.append( f"
{highlighted_text}
") # Span details html_parts.append( "
") html_parts.append( f"Span: \"{span_info['span_string']}\" (positions {span_info['span_start']}-{span_info['span_end']})") html_parts.append("
") else: html_parts.append( f"
{original_text}
") html_parts.append( "
No specific span identified
") html_parts.append("
") html_parts.append("
") return "".join(html_parts) def format_span_results(text: str, results: List[Dict[str, Any]]) -> str: """Format span prediction results as HTML.""" if not results or not results[0]['patterns']: return "
No patterns processed.
" patterns = results[0]['patterns'] html_parts = [] html_parts.append("
") # Header html_parts.append( f"

Span predictions for {len(patterns)} pattern(s):

") # Process each pattern for i, pattern_info in enumerate(patterns, 1): pattern = pattern_info['pattern'] span_info = pattern_info['span'] html_parts.append( "
") html_parts.append( f"

{i}. {pattern}

") # Highlighted text if span_info['span_string']: highlighted_text = highlight_span( text, span_info['span_start'], span_info['span_end'], span_info['span_string'] ) html_parts.append( f"
{highlighted_text}
") # Span details html_parts.append( "
") html_parts.append( f"Span: \"{span_info['span_string']}\" (positions {span_info['span_start']}-{span_info['span_end']})") html_parts.append("
") else: html_parts.append( f"
{text}
") html_parts.append( "
No span found for this pattern
") html_parts.append("
") html_parts.append("
") return "".join(html_parts) def process_full_pipeline(text: str, n_candidates: int) -> str: """Process text through the full pipeline.""" if not text.strip(): return "
Please enter some text to analyze.
" if not MODELS_LOADED: return f"
Error: {MODEL_ERROR}
" try: results = PIPELINE.process_text( text.strip(), n_candidates=n_candidates) return format_pipeline_results(results) except Exception as e: return f"
Error processing text: {str(e)}
" def process_span_prediction(text: str, patterns_text: str) -> str: """Process text for span prediction only.""" if not text.strip(): return "
Please enter some text to analyze.
" if not patterns_text.strip(): return "
Please enter some patterns to search for.
" if not MODELS_LOADED: return f"
Error: {MODEL_ERROR}
" # Parse patterns patterns = [p.strip() for p in patterns_text.strip().split('\n') if p.strip()] if not patterns: return "
No valid patterns found.
" # Prepare input for span predictor examples_with_patterns = [{'example': text.strip(), 'patterns': [{'id': f'pattern_{i}', 'pattern': pattern} for i, pattern in enumerate(patterns)]}] try: results = SPAN_PREDICTOR.predict_spans(examples_with_patterns) return format_span_results(text.strip(), results) except Exception as e: return f"
Error processing spans: {str(e)}
" # Create the Gradio interface def create_demo(): """Create the Gradio demo interface.""" # Custom CSS css = """ .gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .gr-button { background: linear-gradient(90deg, #1976d2, #42a5f5); border: none; color: white; font-weight: bold; } .gr-button:hover { background: linear-gradient(90deg, #1565c0, #2196f3); } """ with gr.Blocks(css=css, title="RusCxnPipe Demo", theme=gr.themes.Soft()) as demo: # Header gr.Markdown(""" # 🔍 RusCxnPipe: Russian Constructicon Pattern Extractor **Automatically identify and locate Russian constructicon patterns in text** This tool uses advanced NLP models to find linguistic constructions from the Russian Constructicon database in your text. It performs semantic search, classification, and span prediction to provide accurate results with precise text locations. """) with gr.Tabs(): # Tab 1: Full Pipeline with gr.Tab("🚀 Full Pipeline", id="pipeline"): gr.Markdown(""" ### Complete Analysis Enter Russian text to automatically find all constructicon patterns present in it. The system will search through the database, classify candidates, and highlight exact locations. """) with gr.Row(): with gr.Column(scale=2): text_input = gr.Textbox( label="Text", placeholder="Мои друзья разъехались и исчезли кто где.", lines=3, value="Мои друзья разъехались и исчезли кто где.") n_candidates = gr.Slider( minimum=5, maximum=50, value=15, step=5, label="Number of semantic search candidates", info="More candidates = more thorough search but slower processing and higher probability of false-positives" ) analyze_btn = gr.Button( "🔍 Analyze Text", variant="primary", size="lg") with gr.Column(scale=3): results_html = gr.HTML( label="Results", value="
Enter text and click 'Analyze Text' to see results
" ) # Examples gr.Markdown("### 📝 Try these examples:") example_texts = [ "Мои друзья разъехались и исчезли кто где.", "Петр так и замер на месте.", "Таня танцевала без устали, танцевала со всеми подряд." ] with gr.Row(): for example in example_texts: gr.Button(f'"{example}"', size="sm").click( lambda x=example: x, outputs=text_input ) analyze_btn.click( fn=process_full_pipeline, inputs=[text_input, n_candidates], outputs=results_html ) # Tab 2: Span Prediction Only with gr.Tab("🎯 Span Prediction", id="spans"): gr.Markdown(""" ### Pattern Span Detection Enter text and specific patterns to find where exactly these patterns occur in the text. This skips the search and classification steps, directly predicting span boundaries. """) with gr.Row(): with gr.Column(scale=2): span_text_input = gr.Textbox( label="Text", placeholder="Мои друзья разъехались и исчезли кто где.", lines=3, value="Мои друзья разъехались и исчезли кто где.") patterns_input = gr.Textbox( label="Patterns (one per line)", placeholder="VP кто PronInt\nVP кто где", lines=5, value="VP кто PronInt\nVP кто где" ) predict_btn = gr.Button( "🎯 Predict Spans", variant="primary", size="lg") with gr.Column(scale=3): span_results_html = gr.HTML( label="Span Results", value="
Enter text and patterns, then click 'Predict Spans' to see results
" ) predict_btn.click( fn=process_span_prediction, inputs=[span_text_input, patterns_input], outputs=span_results_html ) # Footer gr.Markdown(""" --- **About RusCxnPipe**: This tool is based on fine-tuned transformer models trained on Russian Constructicon data. The pipeline combines semantic search, classification, and span prediction to achieve high accuracy in construction detection. **Models used**: - Semantic: [ruscxn-embedder](https://huggingface.co/Futyn-Maker/ruscxn-embedder) - Classification: [ruscxn-classifier](https://huggingface.co/Futyn-Maker/ruscxn-classifier) - Span prediction: [ruscxn-span-predictor](https://huggingface.co/Futyn-Maker/ruscxn-span-predictor) 📚 [Russian Constructicon Database](https://constructicon.ruscorpora.ru/) | 💻 [Source Code](https://github.com/Futyn-Maker/ruscxnpipe) """) return demo if __name__ == "__main__": demo = create_demo() demo.launch( server_name="0.0.0.0", # For Hugging Face Spaces server_port=7860, # Default port for Spaces show_error=True )