Spaces:
Sleeping
Sleeping
File size: 16,080 Bytes
a25103f aec7a71 a25103f 0a340bb a25103f 0a340bb a25103f 0a340bb a25103f 0a340bb a25103f c4dd122 a25103f c4dd122 a25103f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
"""Gradio demo application for RusCxnPipe."""
import gradio as gr
import logging
from typing import List, Dict, Any
# Set up logging to avoid cluttering the interface
logging.getLogger("transformers").setLevel(logging.WARNING)
logging.getLogger("sentence_transformers").setLevel(logging.WARNING)
logging.getLogger("torch").setLevel(logging.WARNING)
try:
from ruscxnpipe import RusCxnPipe, SpanPredictor
except ImportError:
# For development/testing when library isn't installed
import sys
import os
sys.path.append(
os.path.dirname(
os.path.dirname(
os.path.abspath(__file__))))
from ruscxnpipe import RusCxnPipe, SpanPredictor
# Initialize models at startup
print("🚀 Initializing RusCxnPipe models...")
try:
PIPELINE = RusCxnPipe(
semantic_model="Futyn-Maker/ruscxn-embedder",
classification_model="Futyn-Maker/ruscxn-classifier",
span_model="Futyn-Maker/ruscxn-span-predictor"
)
SPAN_PREDICTOR = SpanPredictor(
model_name="Futyn-Maker/ruscxn-span-predictor")
print("✅ Models initialized successfully!")
MODELS_LOADED = True
MODEL_ERROR = None
except Exception as e:
print(f"❌ Error initializing models: {str(e)}")
PIPELINE = None
SPAN_PREDICTOR = None
MODELS_LOADED = False
MODEL_ERROR = str(e)
def highlight_span(
text: str,
span_start: int,
span_end: int,
span_string: str) -> str:
"""Highlight a span in text using HTML."""
if span_start < 0 or span_end > len(text) or span_start >= span_end:
return text
# Ensure the span matches
actual_span = text[span_start:span_end]
if actual_span.strip() != span_string.strip():
# Fallback: try to find the span in the text
span_start = text.find(span_string)
if span_start >= 0:
span_end = span_start + len(span_string)
else:
return text
# Create highlighted version
before = text[:span_start]
highlighted = text[span_start:span_end]
after = text[span_end:]
return f'{before}<mark style="background-color: #ffeb3b; padding: 2px 4px; border-radius: 3px; font-weight: bold;">{highlighted}</mark>{after}'
def create_construction_link(construction_id: str, pattern: str) -> str:
"""Create a clickable link to the construction page."""
url = f"https://constructicon.ruscorpora.ru/construction/{construction_id}"
return f'<a href="{url}" target="_blank" style="color: #1976d2; text-decoration: none; font-weight: bold; border-bottom: 1px dotted #1976d2;">{pattern}</a>'
def format_pipeline_results(results: Dict[str, Any]) -> str:
"""Format the pipeline results as HTML."""
if not results or not results['constructions']:
return "<div style='padding: 20px; text-align: center; color: #666;'>No constructions found in the text.</div>"
constructions = results['constructions']
original_text = results['example']
html_parts = []
html_parts.append("<div style='font-family: Arial, sans-serif;'>")
# Header
html_parts.append(
"<h3 style='color: #333; margin-bottom: 20px;'>Found {} construction(s):</h3>".format(
len(constructions)))
# Process each construction
for i, construction in enumerate(constructions, 1):
construction_id = construction['id']
pattern = construction['pattern']
span_info = construction['span']
# Construction header with link
html_parts.append(
"<div style='margin-bottom: 25px; padding: 15px; border: 1px solid #e0e0e0; border-radius: 8px; background-color: #fafafa;'>")
html_parts.append(
f"<h4 style='margin: 0 0 10px 0; color: #333;'>{i}. {create_construction_link(construction_id, pattern)}</h4>")
# Highlighted text
if span_info['span_string']:
highlighted_text = highlight_span(
original_text,
span_info['span_start'],
span_info['span_end'],
span_info['span_string']
)
html_parts.append(
f"<div style='font-size: 16px; line-height: 1.5; margin-top: 10px; padding: 10px; background-color: white; border-radius: 4px; border: 1px solid #ddd;'>{highlighted_text}</div>")
# Span details
html_parts.append(
"<div style='margin-top: 8px; font-size: 12px; color: #666;'>")
html_parts.append(
f"Span: \"{span_info['span_string']}\" (positions {span_info['span_start']}-{span_info['span_end']})")
html_parts.append("</div>")
else:
html_parts.append(
f"<div style='font-size: 16px; line-height: 1.5; margin-top: 10px; padding: 10px; background-color: white; border-radius: 4px; border: 1px solid #ddd;'>{original_text}</div>")
html_parts.append(
"<div style='margin-top: 8px; font-size: 12px; color: #999;'>No specific span identified</div>")
html_parts.append("</div>")
html_parts.append("</div>")
return "".join(html_parts)
def format_span_results(text: str, results: List[Dict[str, Any]]) -> str:
"""Format span prediction results as HTML."""
if not results or not results[0]['patterns']:
return "<div style='padding: 20px; text-align: center; color: #666;'>No patterns processed.</div>"
patterns = results[0]['patterns']
html_parts = []
html_parts.append("<div style='font-family: Arial, sans-serif;'>")
# Header
html_parts.append(
f"<h3 style='color: #333; margin-bottom: 20px;'>Span predictions for {len(patterns)} pattern(s):</h3>")
# Process each pattern
for i, pattern_info in enumerate(patterns, 1):
pattern = pattern_info['pattern']
span_info = pattern_info['span']
html_parts.append(
"<div style='margin-bottom: 25px; padding: 15px; border: 1px solid #e0e0e0; border-radius: 8px; background-color: #fafafa;'>")
html_parts.append(
f"<h4 style='margin: 0 0 10px 0; color: #333;'>{i}. {pattern}</h4>")
# Highlighted text
if span_info['span_string']:
highlighted_text = highlight_span(
text,
span_info['span_start'],
span_info['span_end'],
span_info['span_string']
)
html_parts.append(
f"<div style='font-size: 16px; line-height: 1.5; margin-top: 10px; padding: 10px; background-color: white; border-radius: 4px; border: 1px solid #ddd;'>{highlighted_text}</div>")
# Span details
html_parts.append(
"<div style='margin-top: 8px; font-size: 12px; color: #666;'>")
html_parts.append(
f"Span: \"{span_info['span_string']}\" (positions {span_info['span_start']}-{span_info['span_end']})")
html_parts.append("</div>")
else:
html_parts.append(
f"<div style='font-size: 16px; line-height: 1.5; margin-top: 10px; padding: 10px; background-color: white; border-radius: 4px; border: 1px solid #ddd;'>{text}</div>")
html_parts.append(
"<div style='margin-top: 8px; font-size: 12px; color: #999;'>No span found for this pattern</div>")
html_parts.append("</div>")
html_parts.append("</div>")
return "".join(html_parts)
def process_full_pipeline(text: str, n_candidates: int) -> str:
"""Process text through the full pipeline."""
if not text.strip():
return "<div style='padding: 20px; text-align: center; color: #666;'>Please enter some text to analyze.</div>"
if not MODELS_LOADED:
return f"<div style='color: red; padding: 20px;'>Error: {MODEL_ERROR}</div>"
try:
results = PIPELINE.process_text(
text.strip(), n_candidates=n_candidates)
return format_pipeline_results(results)
except Exception as e:
return f"<div style='color: red; padding: 20px;'>Error processing text: {str(e)}</div>"
def process_span_prediction(text: str, patterns_text: str) -> str:
"""Process text for span prediction only."""
if not text.strip():
return "<div style='padding: 20px; text-align: center; color: #666;'>Please enter some text to analyze.</div>"
if not patterns_text.strip():
return "<div style='padding: 20px; text-align: center; color: #666;'>Please enter some patterns to search for.</div>"
if not MODELS_LOADED:
return f"<div style='color: red; padding: 20px;'>Error: {MODEL_ERROR}</div>"
# Parse patterns
patterns = [p.strip()
for p in patterns_text.strip().split('\n') if p.strip()]
if not patterns:
return "<div style='padding: 20px; text-align: center; color: #666;'>No valid patterns found.</div>"
# Prepare input for span predictor
examples_with_patterns = [{'example': text.strip(),
'patterns': [{'id': f'pattern_{i}',
'pattern': pattern} for i,
pattern in enumerate(patterns)]}]
try:
results = SPAN_PREDICTOR.predict_spans(examples_with_patterns)
return format_span_results(text.strip(), results)
except Exception as e:
return f"<div style='color: red; padding: 20px;'>Error processing spans: {str(e)}</div>"
# Create the Gradio interface
def create_demo():
"""Create the Gradio demo interface."""
# Custom CSS
css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.gr-button {
background: linear-gradient(90deg, #1976d2, #42a5f5);
border: none;
color: white;
font-weight: bold;
}
.gr-button:hover {
background: linear-gradient(90deg, #1565c0, #2196f3);
}
"""
with gr.Blocks(css=css, title="RusCxnPipe Demo", theme=gr.themes.Soft()) as demo:
# Header
gr.Markdown("""
# 🔍 RusCxnPipe: Russian Constructicon Pattern Extractor
**Automatically identify and locate Russian constructicon patterns in text**
This tool uses advanced NLP models to find linguistic constructions from the Russian Constructicon database in your text.
It performs semantic search, classification, and span prediction to provide accurate results with precise text locations.
""")
with gr.Tabs():
# Tab 1: Full Pipeline
with gr.Tab("🚀 Full Pipeline", id="pipeline"):
gr.Markdown("""
### Complete Analysis
Enter Russian text to automatically find all constructicon patterns present in it.
The system will search through the database, classify candidates, and highlight exact locations.
""")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Text",
placeholder="Мои друзья разъехались и исчезли кто где.",
lines=3,
value="Мои друзья разъехались и исчезли кто где.")
n_candidates = gr.Slider(
minimum=5,
maximum=50,
value=15,
step=5,
label="Number of semantic search candidates",
info="More candidates = more thorough search but slower processing and higher probability of false-positives"
)
analyze_btn = gr.Button(
"🔍 Analyze Text", variant="primary", size="lg")
with gr.Column(scale=3):
results_html = gr.HTML(
label="Results",
value="<div style='padding: 40px; text-align: center; color: #666; border: 2px dashed #ccc; border-radius: 8px;'>Enter text and click 'Analyze Text' to see results</div>"
)
# Examples
gr.Markdown("### 📝 Try these examples:")
example_texts = [
"Мои друзья разъехались и исчезли кто где.",
"Петр так и замер на месте.",
"Таня танцевала без устали, танцевала со всеми подряд."
]
with gr.Row():
for example in example_texts:
gr.Button(f'"{example}"', size="sm").click(
lambda x=example: x, outputs=text_input
)
analyze_btn.click(
fn=process_full_pipeline,
inputs=[text_input, n_candidates],
outputs=results_html
)
# Tab 2: Span Prediction Only
with gr.Tab("🎯 Span Prediction", id="spans"):
gr.Markdown("""
### Pattern Span Detection
Enter text and specific patterns to find where exactly these patterns occur in the text.
This skips the search and classification steps, directly predicting span boundaries.
""")
with gr.Row():
with gr.Column(scale=2):
span_text_input = gr.Textbox(
label="Text",
placeholder="Мои друзья разъехались и исчезли кто где.",
lines=3,
value="Мои друзья разъехались и исчезли кто где.")
patterns_input = gr.Textbox(
label="Patterns (one per line)",
placeholder="VP кто PronInt\nVP кто где",
lines=5,
value="VP кто PronInt\nVP кто где"
)
predict_btn = gr.Button(
"🎯 Predict Spans", variant="primary", size="lg")
with gr.Column(scale=3):
span_results_html = gr.HTML(
label="Span Results",
value="<div style='padding: 40px; text-align: center; color: #666; border: 2px dashed #ccc; border-radius: 8px;'>Enter text and patterns, then click 'Predict Spans' to see results</div>"
)
predict_btn.click(
fn=process_span_prediction,
inputs=[span_text_input, patterns_input],
outputs=span_results_html
)
# Footer
gr.Markdown("""
---
**About RusCxnPipe**: This tool is based on fine-tuned transformer models trained on Russian Constructicon data.
The pipeline combines semantic search, classification, and span prediction to achieve high accuracy in construction detection.
**Models used**:
- Semantic: [ruscxn-embedder](https://huggingface.co/Futyn-Maker/ruscxn-embedder)
- Classification: [ruscxn-classifier](https://huggingface.co/Futyn-Maker/ruscxn-classifier)
- Span prediction: [ruscxn-span-predictor](https://huggingface.co/Futyn-Maker/ruscxn-span-predictor)
📚 [Russian Constructicon Database](https://constructicon.ruscorpora.ru/) | 💻 [Source Code](https://github.com/Futyn-Maker/ruscxnpipe)
""")
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(
server_name="0.0.0.0", # For Hugging Face Spaces
server_port=7860, # Default port for Spaces
show_error=True
)
|