Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import librosa
|
3 |
+
from asr import transcribe, ASR_EXAMPLES, ASR_NOTE
|
4 |
+
from lid import identify # Import language identification model
|
5 |
+
|
6 |
+
# Function to detect language and transcribe automatically
|
7 |
+
def auto_detect_and_transcribe(audio):
|
8 |
+
detected_lang = identify(audio) # Identify language from audio
|
9 |
+
if detected_lang in ["swh", "eng"]: # Ensure it's either Swahili or English
|
10 |
+
return f"[Detected Language: {detected_lang.upper()}]\n\n" + transcribe(audio)
|
11 |
+
return "Error: Unsupported language detected."
|
12 |
+
|
13 |
+
# Speech-to-Text Interface with Auto Language Detection
|
14 |
+
mms_transcribe = gr.Interface(
|
15 |
+
fn=auto_detect_and_transcribe,
|
16 |
+
inputs=gr.Audio(),
|
17 |
+
outputs="text",
|
18 |
+
examples=ASR_EXAMPLES,
|
19 |
+
title="Speech-to-Text (Automatic Language Detection)",
|
20 |
+
description="Upload or record audio, and the model will detect if it is Swahili or English before transcribing.",
|
21 |
+
article=ASR_NOTE,
|
22 |
+
allow_flagging="never",
|
23 |
+
)
|
24 |
+
|
25 |
+
# Main Gradio App
|
26 |
+
with gr.Blocks() as demo:
|
27 |
+
gr.Markdown("<p align='center' style='font-size: 20px;'>MMS Speech-to-Text</p>")
|
28 |
+
gr.HTML("<center>Convert speech to text while automatically detecting Swahili or English.</center>")
|
29 |
+
|
30 |
+
mms_transcribe.render()
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
demo.queue()
|
34 |
+
demo.launch()
|
35 |
+
|