Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import soundfile as sf | |
from huggingface_hub import InferenceClient | |
# Initialize Facebook MMS ASR model | |
asr_model = pipeline("automatic-speech-recognition", model="facebook/mms-1b-all") | |
# Initialize Facebook MMS TTS model | |
tts_model = pipeline("text-to-speech", model="facebook/mms-tts") | |
# Initialize the Chat Model (Gemma-2-9B or Futuresony.gguf) | |
chat_client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") # Change if needed | |
def asr_chat_tts(audio): | |
""" | |
1. Convert Speech to Text (ASR) | |
2. Process text through Chat Model (LLM) | |
3. Convert response to Speech (TTS) | |
""" | |
# Step 1: Transcribe speech using Facebook MMS ASR | |
transcription = asr_model(audio)["text"] | |
# Step 2: Process text through the chat model | |
messages = [{"role": "system", "content": "You are a helpful AI assistant."}] | |
messages.append({"role": "user", "content": transcription}) | |
response = "" | |
for msg in chat_client.chat_completion(messages, max_tokens=512, stream=True): | |
token = msg.choices[0].delta.content | |
response += token | |
# Step 3: Convert response to speech using Facebook MMS TTS | |
speech = tts_model(response) | |
output_file = "generated_speech.wav" | |
sf.write(output_file, speech["audio"], samplerate=speech["sampling_rate"]) | |
return transcription, response, output_file | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("<h2 style='text-align: center;'>ASR β Chatbot β TTS</h2>") | |
with gr.Row(): | |
audio_input = gr.Audio(source="microphone", type="filepath", label="π€ Speak Here") | |
text_transcription = gr.Textbox(label="π Transcription", interactive=False) | |
text_response = gr.Textbox(label="π€ Chatbot Response", interactive=False) | |
audio_output = gr.Audio(label="π Generated Speech") | |
submit_button = gr.Button("Process Speech π") | |
submit_button.click(fn=asr_chat_tts, inputs=[audio_input], outputs=[text_transcription, text_response, audio_output]) | |
# Run the App | |
if __name__ == "__main__": | |
demo.launch() | |