import gradio as gr import os import json import faiss import numpy as np import torch from sentence_transformers import SentenceTransformer from huggingface_hub import InferenceClient, hf_hub_download # 🔹 Hugging Face Credentials HF_REPO = "Futuresony/future_ai_12_10_2024.gguf" HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Store your token as an environment variable for security # 🔹 FAISS Index Path FAISS_PATH = "asa_faiss.index" # 🔹 Load Sentence Transformer for Embeddings embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") # 🔹 Load FAISS Index from Hugging Face faiss_local_path = hf_hub_download(HF_REPO, "asa_faiss.index", token=HF_TOKEN) faiss_index = faiss.read_index(faiss_local_path) # 🔹 Initialize Hugging Face Model Client client = InferenceClient(model=HF_REPO, token=HF_TOKEN) # 🔹 Retrieve Relevant FAISS Context def retrieve_relevant_context(user_query, top_k=3): query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy() distances, indices = faiss_index.search(query_embedding, top_k) retrieved_texts = [] for idx in indices[0]: # Extract top_k results if idx != -1: # Ensure valid index retrieved_texts.append(f"Example: {idx} → {idx}") # Customize how retrieved data appears return "\n".join(retrieved_texts) if retrieved_texts else "No relevant data found." # 🔹 Format Model Prompt with FAISS Guidance def format_prompt(user_input, system_prompt, history): retrieved_context = retrieve_relevant_context(user_input) faiss_instruction = ( "Use the following example responses as a guide for formatting and writing style:\n" f"{retrieved_context}\n\n" "### Instruction:\n" f"{user_input}\n\n### Response:" ) return faiss_instruction # 🔹 Chatbot Response Function def respond(message, history, system_message, max_tokens, temperature, top_p): full_prompt = format_prompt(message, system_message, history) response = client.text_generation( full_prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ) # ✅ Extract only model-generated response cleaned_response = response.split("### Response:")[-1].strip() history.append((message, cleaned_response)) # ✅ Update chat history yield cleaned_response # ✅ Output the response # 🔹 Gradio Chat Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful AI trained to follow FAISS-based writing styles.", label="System message"), gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()