import faiss import numpy as np # Load FAISS index FAISS_PATH = "asa_faiss.index" index = faiss.read_index(FAISS_PATH) # Example query vector (random, replace with actual embedding from your model) query_vector = np.random.rand(1, index.d).astype('float32') # Search FAISS index D, I = index.search(query_vector, k=1) # k=1 means get 1 nearest neighbor print(f"Closest match index: {I[0][0]}, Distance: {D[0][0]}")