import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") def format_alpaca_prompt(user_input, system_prompt): """Formats input in Alpaca/LLaMA style""" prompt = f"""{system_prompt} ### Instruction: {user_input} ### Response: """ return prompt def respond(message, history, system_message, max_tokens, temperature, top_p): formatted_prompt = format_alpaca_prompt(message, system_message) response = client.text_generation( formatted_prompt, # ✅ Pass as a single string max_new_tokens=max_tokens, # ✅ Use max_new_tokens, not max_tokens temperature=temperature, top_p=top_p, ) yield response # ✅ Output the generated response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), # ✅ Keep ≤250 gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()