Futuresony commited on
Commit
fe49e01
·
verified ·
1 Parent(s): 5a4b651

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -48
app.py CHANGED
@@ -1,73 +1,64 @@
1
  import gradio as gr
2
- import requests
3
- import importlib
4
- from bs4 import BeautifulSoup
5
  from huggingface_hub import InferenceClient
6
 
7
- # Import weather script
8
- weather = importlib.import_module("weather")
9
-
10
- # Hugging Face model
11
  client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
12
 
13
- def google_search(query):
14
- """Scrape Google search for an answer."""
15
- url = f"https://www.google.com/search?q={query}"
16
- headers = {"User-Agent": "Mozilla/5.0"}
17
-
18
- try:
19
- response = requests.get(url, headers=headers)
20
- soup = BeautifulSoup(response.text, "html.parser")
21
- result = soup.find("div", class_="BNeawe iBp4i AP7Wnd")
22
-
23
- if result:
24
- return result.text
25
- return "Samahani, siwezi kupata majibu."
26
- except Exception:
27
- return "Samahani, siwezi kuwasiliana na Google kwa sasa."
28
-
29
- def respond(message, history, system_message, max_tokens, temperature, top_p):
30
- """Chatbot that answers user and fetches real-time info if needed."""
31
-
32
- # Handle weather requests
33
- if "weather" in message.lower() or "hali ya hewa" in message.lower():
34
- city = message.split()[-1] # Last word as city name
35
- return weather.get_weather(city)
36
-
37
- # Handle time requests
38
- if "time" in message.lower() or "saa ngapi" in message.lower():
39
- from datetime import datetime
40
- return f"Saa ya sasa ni {datetime.now().strftime('%H:%M:%S')}."
41
 
42
- # Model response
 
 
 
 
 
 
 
43
  messages = [{"role": "system", "content": system_message}]
 
44
  for val in history:
45
- if val[0]: messages.append({"role": "user", "content": val[0]})
46
- if val[1]: messages.append({"role": "assistant", "content": val[1]})
 
 
 
47
  messages.append({"role": "user", "content": message})
48
 
49
  response = ""
50
- for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
 
 
 
 
 
 
 
51
  token = message.choices[0].delta.content
 
52
  response += token
 
53
 
54
- # If model doesn't know, fetch from Google
55
- if "I don't know" in response or response.strip() == "":
56
- response = google_search(message)
57
-
58
- return response
59
 
60
- # Gradio UI
 
 
61
  demo = gr.ChatInterface(
62
  respond,
63
  additional_inputs=[
64
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
65
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
66
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
67
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
 
 
 
 
 
 
68
  ],
69
  )
70
- # try
 
71
  if __name__ == "__main__":
72
  demo.launch()
73
-
 
1
  import gradio as gr
 
 
 
2
  from huggingface_hub import InferenceClient
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
 
7
  client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
  messages = [{"role": "system", "content": system_message}]
19
+
20
  for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
  messages.append({"role": "user", "content": message})
27
 
28
  response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
  token = message.choices[0].delta.content
38
+
39
  response += token
40
+ yield response
41
 
 
 
 
 
 
42
 
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
  ],
60
  )
61
+
62
+
63
  if __name__ == "__main__":
64
  demo.launch()