Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,34 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from peft import PeftModel
|
4 |
-
import gradio as gr
|
5 |
|
6 |
-
#
|
7 |
-
# Load Base Model and LoRA Adapter
|
8 |
-
# --------------------
|
9 |
def load_model_and_adapter():
|
10 |
-
base_model_name = "
|
11 |
-
|
12 |
-
|
13 |
-
# Load tokenizer
|
|
|
14 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
15 |
-
|
16 |
-
#
|
17 |
-
config = AutoModelForCausalLM.config_class.from_pretrained(base_model_name)
|
18 |
-
if hasattr(config, "rope_scaling"):
|
19 |
-
config.rope_scaling = {"type": "dynamic", "factor": 32.0} # Override with valid keys
|
20 |
-
|
21 |
-
# Load base model with fixed config
|
22 |
base_model = AutoModelForCausalLM.from_pretrained(
|
23 |
base_model_name,
|
24 |
-
|
25 |
-
|
26 |
-
device_map="auto" # Automatically map to GPU or CPU
|
27 |
)
|
28 |
-
|
29 |
# Load LoRA adapter
|
30 |
-
model = PeftModel.from_pretrained(base_model,
|
31 |
-
|
|
|
|
|
|
|
32 |
return tokenizer, model
|
33 |
|
34 |
-
# Load the model and tokenizer once
|
35 |
-
tokenizer, model = load_model_and_adapter()
|
36 |
|
37 |
-
#
|
38 |
-
# Generate Response Function
|
39 |
-
# --------------------
|
40 |
def respond(
|
41 |
message,
|
42 |
history: list[tuple[str, str]],
|
@@ -45,49 +37,58 @@ def respond(
|
|
45 |
temperature,
|
46 |
top_p,
|
47 |
):
|
|
|
|
|
|
|
|
|
|
|
48 |
messages = [{"role": "system", "content": system_message}]
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
messages.append({"role": "assistant", "content": val[1]})
|
55 |
-
|
56 |
messages.append({"role": "user", "content": message})
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
|
62 |
# Generate response
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
temperature=temperature,
|
67 |
top_p=top_p,
|
68 |
pad_token_id=tokenizer.eos_token_id,
|
69 |
-
eos_token_id=tokenizer.eos_token_id
|
70 |
)
|
71 |
-
|
72 |
-
|
73 |
-
response =
|
|
|
74 |
return response
|
75 |
|
76 |
-
|
77 |
-
# Gradio
|
78 |
-
# --------------------
|
79 |
demo = gr.ChatInterface(
|
80 |
respond,
|
81 |
additional_inputs=[
|
82 |
-
gr.Textbox(value="You are a helpful assistant.", label="System message"),
|
83 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
84 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
85 |
-
gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
],
|
87 |
)
|
88 |
|
89 |
-
# --------------------
|
90 |
-
# Launch the Interface
|
91 |
-
# --------------------
|
92 |
if __name__ == "__main__":
|
93 |
demo.launch()
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
3 |
import torch
|
|
|
4 |
from peft import PeftModel
|
|
|
5 |
|
6 |
+
# Function to load the base model and LoRA adapter
|
|
|
|
|
7 |
def load_model_and_adapter():
|
8 |
+
base_model_name = "Futuresony/future_ai_12_10_2024.gguf" # Replace with your model path or ID
|
9 |
+
adapter_path = "./adapter" # Adjust this path to your LoRA adapter files location
|
10 |
+
|
11 |
+
# Load configuration and tokenizer
|
12 |
+
config = AutoConfig.from_pretrained(base_model_name)
|
13 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
14 |
+
|
15 |
+
# Load the base model
|
|
|
|
|
|
|
|
|
|
|
16 |
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
base_model_name,
|
18 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
19 |
+
device_map="auto",
|
|
|
20 |
)
|
21 |
+
|
22 |
# Load LoRA adapter
|
23 |
+
model = PeftModel.from_pretrained(base_model, adapter_path)
|
24 |
+
|
25 |
+
# Ensure the model is ready
|
26 |
+
model.eval()
|
27 |
+
|
28 |
return tokenizer, model
|
29 |
|
|
|
|
|
30 |
|
31 |
+
# Function to handle the conversation
|
|
|
|
|
32 |
def respond(
|
33 |
message,
|
34 |
history: list[tuple[str, str]],
|
|
|
37 |
temperature,
|
38 |
top_p,
|
39 |
):
|
40 |
+
# Load tokenizer and model
|
41 |
+
global tokenizer, model
|
42 |
+
tokenizer, model = load_model_and_adapter()
|
43 |
+
|
44 |
+
# Build the input prompt
|
45 |
messages = [{"role": "system", "content": system_message}]
|
46 |
+
for user_input, assistant_response in history:
|
47 |
+
if user_input:
|
48 |
+
messages.append({"role": "user", "content": user_input})
|
49 |
+
if assistant_response:
|
50 |
+
messages.append({"role": "assistant", "content": assistant_response})
|
|
|
|
|
51 |
messages.append({"role": "user", "content": message})
|
52 |
|
53 |
+
# Tokenize input
|
54 |
+
inputs = tokenizer.apply_chat_template(
|
55 |
+
messages,
|
56 |
+
add_generation_prompt=True,
|
57 |
+
return_tensors="pt",
|
58 |
+
).to(model.device)
|
59 |
|
60 |
# Generate response
|
61 |
+
output = model.generate(
|
62 |
+
inputs,
|
63 |
+
max_new_tokens=max_tokens,
|
64 |
temperature=temperature,
|
65 |
top_p=top_p,
|
66 |
pad_token_id=tokenizer.eos_token_id,
|
|
|
67 |
)
|
68 |
+
|
69 |
+
# Decode response
|
70 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
71 |
+
|
72 |
return response
|
73 |
|
74 |
+
|
75 |
+
# Gradio interface
|
|
|
76 |
demo = gr.ChatInterface(
|
77 |
respond,
|
78 |
additional_inputs=[
|
79 |
+
gr.Textbox(value="You are a helpful AI assistant.", label="System message"),
|
80 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
81 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
82 |
+
gr.Slider(
|
83 |
+
minimum=0.1,
|
84 |
+
maximum=1.0,
|
85 |
+
value=0.95,
|
86 |
+
step=0.05,
|
87 |
+
label="Top-p (nucleus sampling)",
|
88 |
+
),
|
89 |
],
|
90 |
)
|
91 |
|
|
|
|
|
|
|
92 |
if __name__ == "__main__":
|
93 |
demo.launch()
|
94 |
+
|