Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,34 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
9 |
|
|
|
|
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -16,50 +38,48 @@ def respond(
|
|
16 |
top_p,
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
|
|
|
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
65 |
-
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
+
# --------------------
|
7 |
+
# Load Base Model and LoRA Adapter
|
8 |
+
# --------------------
|
9 |
+
def load_model_and_adapter():
|
10 |
+
base_model_name = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model name
|
11 |
+
adapter_repo = "Futuresony/future_ai_12_10_2024" # Your Hugging Face LoRA repo
|
12 |
+
|
13 |
+
# Load tokenizer and base model
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
15 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
base_model_name,
|
17 |
+
torch_dtype=torch.float16, # Use float16 for efficiency if GPU is available
|
18 |
+
device_map="auto" # Automatically map to GPU or CPU
|
19 |
+
)
|
20 |
+
|
21 |
+
# Load LoRA adapter
|
22 |
+
model = PeftModel.from_pretrained(base_model, adapter_repo)
|
23 |
+
model.eval() # Set to evaluation mode
|
24 |
+
return tokenizer, model
|
25 |
|
26 |
+
# Load the model and tokenizer once
|
27 |
+
tokenizer, model = load_model_and_adapter()
|
28 |
|
29 |
+
# --------------------
|
30 |
+
# Generate Response Function
|
31 |
+
# --------------------
|
32 |
def respond(
|
33 |
message,
|
34 |
history: list[tuple[str, str]],
|
|
|
38 |
top_p,
|
39 |
):
|
40 |
messages = [{"role": "system", "content": system_message}]
|
41 |
+
|
42 |
for val in history:
|
43 |
if val[0]:
|
44 |
messages.append({"role": "user", "content": val[0]})
|
45 |
if val[1]:
|
46 |
messages.append({"role": "assistant", "content": val[1]})
|
47 |
+
|
48 |
messages.append({"role": "user", "content": message})
|
49 |
|
50 |
+
# Prepare input prompt for generation
|
51 |
+
prompt = "\n".join([f"{m['role']}: {m['content']}" for m in messages])
|
52 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
53 |
|
54 |
+
# Generate response
|
55 |
+
outputs = model.generate(
|
56 |
+
**inputs,
|
57 |
+
max_length=max_tokens,
|
58 |
temperature=temperature,
|
59 |
top_p=top_p,
|
60 |
+
pad_token_id=tokenizer.eos_token_id,
|
61 |
+
eos_token_id=tokenizer.eos_token_id
|
62 |
+
)
|
63 |
+
|
64 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
65 |
+
response = response.split("assistant:")[-1].strip() # Clean response
|
66 |
+
return response
|
67 |
|
68 |
+
# --------------------
|
69 |
+
# Gradio Interface
|
70 |
+
# --------------------
|
|
|
71 |
demo = gr.ChatInterface(
|
72 |
respond,
|
73 |
additional_inputs=[
|
74 |
+
gr.Textbox(value="You are a helpful assistant.", label="System message"),
|
75 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
76 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
77 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
],
|
79 |
)
|
80 |
|
81 |
+
# --------------------
|
82 |
+
# Launch the Interface
|
83 |
+
# --------------------
|
84 |
if __name__ == "__main__":
|
85 |
demo.launch()
|
|