Futuresony commited on
Commit
0b37678
·
verified ·
1 Parent(s): aae2c97

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -31
app.py CHANGED
@@ -1,12 +1,34 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
 
9
 
 
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -16,50 +38,48 @@ def respond(
16
  top_p,
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
 
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
 
 
63
  if __name__ == "__main__":
64
  demo.launch()
65
-
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from peft import PeftModel
4
  import gradio as gr
 
5
 
6
+ # --------------------
7
+ # Load Base Model and LoRA Adapter
8
+ # --------------------
9
+ def load_model_and_adapter():
10
+ base_model_name = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model name
11
+ adapter_repo = "Futuresony/future_ai_12_10_2024" # Your Hugging Face LoRA repo
12
+
13
+ # Load tokenizer and base model
14
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
15
+ base_model = AutoModelForCausalLM.from_pretrained(
16
+ base_model_name,
17
+ torch_dtype=torch.float16, # Use float16 for efficiency if GPU is available
18
+ device_map="auto" # Automatically map to GPU or CPU
19
+ )
20
+
21
+ # Load LoRA adapter
22
+ model = PeftModel.from_pretrained(base_model, adapter_repo)
23
+ model.eval() # Set to evaluation mode
24
+ return tokenizer, model
25
 
26
+ # Load the model and tokenizer once
27
+ tokenizer, model = load_model_and_adapter()
28
 
29
+ # --------------------
30
+ # Generate Response Function
31
+ # --------------------
32
  def respond(
33
  message,
34
  history: list[tuple[str, str]],
 
38
  top_p,
39
  ):
40
  messages = [{"role": "system", "content": system_message}]
41
+
42
  for val in history:
43
  if val[0]:
44
  messages.append({"role": "user", "content": val[0]})
45
  if val[1]:
46
  messages.append({"role": "assistant", "content": val[1]})
47
+
48
  messages.append({"role": "user", "content": message})
49
 
50
+ # Prepare input prompt for generation
51
+ prompt = "\n".join([f"{m['role']}: {m['content']}" for m in messages])
52
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
53
 
54
+ # Generate response
55
+ outputs = model.generate(
56
+ **inputs,
57
+ max_length=max_tokens,
58
  temperature=temperature,
59
  top_p=top_p,
60
+ pad_token_id=tokenizer.eos_token_id,
61
+ eos_token_id=tokenizer.eos_token_id
62
+ )
63
+
64
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
65
+ response = response.split("assistant:")[-1].strip() # Clean response
66
+ return response
67
 
68
+ # --------------------
69
+ # Gradio Interface
70
+ # --------------------
 
71
  demo = gr.ChatInterface(
72
  respond,
73
  additional_inputs=[
74
+ gr.Textbox(value="You are a helpful assistant.", label="System message"),
75
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
76
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
77
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
78
  ],
79
  )
80
 
81
+ # --------------------
82
+ # Launch the Interface
83
+ # --------------------
84
  if __name__ == "__main__":
85
  demo.launch()