FuturesonyAi / app.py
Futuresony's picture
Update app.py
d88b860 verified
raw
history blame
2.87 kB
import gradio as gr
from huggingface_hub import InferenceClient
from collections import defaultdict
# Initialize the model client
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
# Store user preferences & chat history
user_preferences = defaultdict(int) # Tracks user interests
session_histories = defaultdict(list) # Stores chat history per session
def format_chat_history(history, system_message):
"""Formats history into a single string in Alpaca/LLaMA style."""
chat_str = f"{system_message}\n\n" # Start with system message
for user_msg, bot_response in history:
chat_str += f"### Instruction:\n{user_msg}\n\n### Response:\n{bot_response}\n\n"
return chat_str # Return formatted conversation history
def extract_keywords(text):
"""Extracts simple keywords from user input."""
words = text.lower().split()
common_words = {"the", "is", "a", "and", "to", "of", "in", "it", "you", "for"} # Ignore common words
return [word for word in words if word not in common_words]
def respond(message, history, system_message, max_tokens, temperature, top_p):
session_id = id(history) # Unique ID for each session
session_history = session_histories[session_id] # Retrieve session history
# Extract keywords & update preferences
keywords = extract_keywords(message)
for kw in keywords:
user_preferences[kw] += 1
# Format full conversation as a single string
formatted_input = format_chat_history(session_history, system_message) + f"### Instruction:\n{message}\n\n### Response:\n"
# Send request (fix: ensure input is a single string)
response = client.text_generation(
formatted_input,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# βœ… Extract only the response
cleaned_response = response.split("### Response:")[-1].strip()
# Save to session history
session_history.append((message, cleaned_response))
# Adapt response based on learning
most_asked = max(user_preferences, key=user_preferences.get, default=None)
if most_asked and most_asked in message.lower():
cleaned_response += f"\n\nNaona unapenda mada ya '{most_asked}' sana! Unataka kujua zaidi?"
return cleaned_response # βœ… Fixed: Returns only the final response
# Create Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="Wewe ni msaidizi wa kirafiki anayejifunza upendeleo wa mtumiaji.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()