Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from collections import defaultdict | |
# Initialize the model client | |
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") | |
# Store user preferences & chat history | |
user_preferences = defaultdict(int) # Tracks user interests | |
session_histories = defaultdict(list) # Stores chat history per session | |
def format_chat_history(history, system_message): | |
"""Formats history into a single string in Alpaca/LLaMA style.""" | |
chat_str = f"{system_message}\n\n" # Start with system message | |
for user_msg, bot_response in history: | |
chat_str += f"### Instruction:\n{user_msg}\n\n### Response:\n{bot_response}\n\n" | |
return chat_str # Return formatted conversation history | |
def extract_keywords(text): | |
"""Extracts simple keywords from user input.""" | |
words = text.lower().split() | |
common_words = {"the", "is", "a", "and", "to", "of", "in", "it", "you", "for"} # Ignore common words | |
return [word for word in words if word not in common_words] | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
session_id = id(history) # Unique ID for each session | |
session_history = session_histories[session_id] # Retrieve session history | |
# Extract keywords & update preferences | |
keywords = extract_keywords(message) | |
for kw in keywords: | |
user_preferences[kw] += 1 | |
# Format full conversation as a single string | |
formatted_input = format_chat_history(session_history, system_message) + f"### Instruction:\n{message}\n\n### Response:\n" | |
# Send request (fix: ensure input is a single string) | |
response = client.text_generation( | |
formatted_input, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# β Extract only the response | |
cleaned_response = response.split("### Response:")[-1].strip() | |
# Save to session history | |
session_history.append((message, cleaned_response)) | |
# Adapt response based on learning | |
most_asked = max(user_preferences, key=user_preferences.get, default=None) | |
if most_asked and most_asked in message.lower(): | |
cleaned_response += f"\n\nNaona unapenda mada ya '{most_asked}' sana! Unataka kujua zaidi?" | |
return cleaned_response # β Fixed: Returns only the final response | |
# Create Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="Wewe ni msaidizi wa kirafiki anayejifunza upendeleo wa mtumiaji.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |