File size: 3,484 Bytes
f0e607c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
from huggingface_hub import InferenceClient
from textblob import TextBlob
import json
import os

client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")

# Directory to store interactions and feedback
DATA_DIR = "data"
INTERACTIONS_FILE = os.path.join(DATA_DIR, "interactions.json")

# Ensure the data directory exists
os.makedirs(DATA_DIR, exist_ok=True)

def format_alpaca_prompt(user_input, system_prompt, history):
    """Formats input in Alpaca/LLaMA style"""
    history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history])
    prompt = f"""{system_prompt}
{history_str}

### Instruction:
{user_input}

### Response:
"""
    return prompt

def analyze_sentiment(message):
    """Analyze the sentiment of the user's message"""
    blob = TextBlob(message)
    sentiment = blob.sentiment.polarity
    return sentiment

def save_interaction(user_input, chatbot_response, feedback=None):
    """Save the interaction and feedback to a file"""
    interaction = {
        "user_input": user_input,
        "chatbot_response": chatbot_response,
        "feedback": feedback,
        "timestamp": "2025-02-25 04:00:30"
    }
    if os.path.exists(INTERACTIONS_FILE):
        with open(INTERACTIONS_FILE, "r") as file:
            interactions = json.load(file)
    else:
        interactions = []

    interactions.append(interaction)

    with open(INTERACTIONS_FILE, "w") as file:
        json.dump(interactions, file, indent=4)

def respond(message, history, system_message, max_tokens, temperature, top_p, feedback=None):
    sentiment = analyze_sentiment(message)

    # Adjust system message based on sentiment
    if sentiment < -0.2:
        system_message = "You are a sympathetic Chatbot."
    elif sentiment > 0.2:
        system_message = "You are an enthusiastic Chatbot."
    else:
        system_message = "You are a friendly Chatbot."

    formatted_prompt = format_alpaca_prompt(message, system_message, history)

    response = client.text_generation(
        formatted_prompt,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
    )

    # βœ… Extract only the response
    cleaned_response = response.split("### Response:")[-1].strip()

    history.append((message, cleaned_response))  # βœ… Update history with the new message and response

    save_interaction(message, cleaned_response, feedback)  # βœ… Save the interaction and feedback

    yield cleaned_response  # βœ… Output only the answer

def collect_feedback(response, feedback):
    """Collect user feedback on the chatbot's response"""
    save_interaction(response, feedback=feedback)

feedback_interface = gr.Interface(
    fn=collect_feedback,
    inputs=[
        gr.Textbox(label="Response"),
        gr.Radio(choices=["Good", "Bad"], label="Feedback"),
    ],
    outputs="text",
    title="Feedback Interface"
)

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
        gr.Radio(choices=["Good", "Bad"], label="Feedback", optional=True),
    ],
)

if __name__ == "__main__":
    demo.launch()
    feedback_interface.launch()