import os import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel from huggingface_hub import login # Authenticate with Hugging Face using secret HF_TOKEN hf_token = os.environ.get("HF_TOKEN") if not hf_token: raise RuntimeError("Missing HF_TOKEN in secrets. Please add it in your Space settings.") login(token=hf_token) # Load base model and LoRA adapter base_model_id = "unsloth/gemma-2-9b" # Or your base model lora_model_id = "Futuresony/future_12_10_2024" # Your LoRA fine-tuned model # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(base_model_id) base_model = AutoModelForCausalLM.from_pretrained(base_model_id, torch_dtype=torch.float16, device_map="auto") model = PeftModel.from_pretrained(base_model, lora_model_id) # Ensure model is in evaluation mode model.eval() def generate_response(message, history, system_message, max_tokens, temperature, top_p): prompt = system_message + "\n\n" for user_input, bot_response in history: prompt += f"User: {user_input}\nAssistant: {bot_response}\n" prompt += f"User: {message}\nAssistant:" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) final_response = response.split("Assistant:")[-1].strip() return final_response # Gradio ChatInterface demo = gr.ChatInterface( fn=generate_response, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System Message"), gr.Slider(50, 1024, value=256, step=1, label="Max Tokens"), gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"), gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"), ], title="LoRA AI Chat Assistant", description="Chat with your fine-tuned model using LoRA adapter." ) if __name__ == "__main__": demo.launch()