import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch # Use a CPU-compatible base model (replace this with your actual full-precision model) base_model_id = "unsloth/gemma-2-9b" # Replace with real CPU-compatible model lora_model_id = "import gradio as gr" from huggingface_hub import InferenceClient import os # 🔹 Hugging Face Credentials HF_REPO = "Futuresony/gemma2-9b-lora-alpaca" HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') client = InferenceClient(HF_REPO, token=HF_TOKEN) def format_alpaca_prompt(user_input, system_prompt, history): """Formats input in Alpaca/LLaMA style""" history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history]) prompt = f"""{system_prompt} {history_str} ### Instruction: {user_input} ### Response: """ return prompt def respond(message, history, system_message, max_tokens, temperature, top_p): formatted_prompt = format_alpaca_prompt(message, system_message, history) response = client.text_generation( formatted_prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ) # ✅ Extract only the response cleaned_response = response.split("### Response:")[-1].strip() history.append((message, cleaned_response)) # ✅ Update history with the new message and response yield cleaned_response # ✅ Output only the answer demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()" # Load the base model on CPU base_model = AutoModelForCausalLM.from_pretrained( base_model_id, torch_dtype=torch.float32, # Use float32 for CPU compatibility device_map="cpu" ) # Load the PEFT LoRA model model = PeftModel.from_pretrained(base_model, lora_model_id) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(base_model_id) # Chat function def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for user_msg, bot_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) # Generate response (simulated loop for streaming output) inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cpu") outputs = model.generate( inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) yield response # Gradio UI demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a friendly chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], ) if __name__ == "__main__": demo.launch()