# streamlit_app.py import streamlit as st import sys import os # *** Add these two lines at the very top *** from dotenv import load_dotenv load_dotenv() # Load variables from .env file # Add the directory containing app.py to the Python path # This assumes app.py is in the same directory as streamlit_app.py sys.path.append(os.path.dirname(os.path.abspath(__file__))) # Import your respond function and any necessary global variables from app.py # Make sure app.py loads the model, tokenizer, etc. when imported try: from app import respond, model_id # Import your main function and model_id # You might also need to import other things if respond relies on globals directly # from app import model, tokenizer, embedder, nlp, data, descriptions, embeddings, ... print("Successfully imported respond function from app.py") except ImportError as e: st.error(f"Error importing core logic from app.py: {e}") st.stop() # Stop the app if the core logic can't be loaded # Set Streamlit page config st.set_page_config(page_title="Business Q&A Assistant") st.title(f"Business Q&A Assistant with {model_id}") st.write("Ask questions about the business (details from Google Sheet) or general knowledge (via search).") # Initialize chat history in Streamlit's session state # Session state persists across reruns for a single user session if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input("Your Question"): # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Get the current chat history in the format your respond function expects # Gradio's history is [(user, bot), (user, bot), ...] # Streamlit's session state is a list of dicts [{"role": "user", "content": "..."}] # We need to convert Streamlit's history format to Gradio's format for your respond function gradio_chat_history = [] # Start from the second message if the first was from the system/initial state # Or just iterate through pairs, skipping the latest user prompt for history pass # The respond function expects history *before* the current turn history_for_respond = [] # Iterate through messages, excluding the very last user prompt which is the current input for i in range(len(st.session_state.messages) - 1): if st.session_state.messages[i]["role"] == "user" and st.session_state.messages[i+1]["role"] == "assistant": history_for_respond.append((st.session_state.messages[i]["content"], st.session_state.messages[i+1]["content"])) # Display assistant response in chat message container with st.chat_message("assistant"): with st.spinner("Thinking..."): # Call your respond function # The respond function expects user_input and chat_history in Gradio format # It returns ("", updated_chat_history_in_gradio_format) _, updated_gradio_history = respond(prompt, history_for_respond) # Extract the latest assistant response from the updated history if updated_gradio_history: latest_turn = updated_gradio_history[-1] # The bot response is the second element of the last tuple full_response = latest_turn[1] else: full_response = "Sorry, I couldn't generate a response." # Display the full response st.markdown(full_response) # Update Streamlit's session state history with the new user and assistant messages # The user message was already added before calling respond # Add the assistant message now # Check if the last added message was the user prompt and if the response is not empty if st.session_state.messages[-1]["role"] == "user" and full_response: st.session_state.messages.append({"role": "assistant", "content": full_response})