import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from peft import PeftModel # Load base + LoRA model base_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" lora_model = "Futuresony/future_12_10_2024" tokenizer = AutoTokenizer.from_pretrained(base_model) base = AutoModelForCausalLM.from_pretrained(base_model) model = PeftModel.from_pretrained(base, lora_model) model.eval() # Create generation pipeline generator = pipeline("text-generation", model=model, tokenizer=tokenizer) # Define the chat function def respond(message, history, system_message, max_tokens, temperature, top_p): prompt = system_message + "\n" for user, bot in history: prompt += f"User: {user}\nAssistant: {bot}\n" prompt += f"User: {message}\nAssistant:" response = generator( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, return_full_text=False, )[0]["generated_text"] yield response.strip() # Set up Gradio UI demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()