Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,31 +5,33 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
5 |
from peft import PeftModel
|
6 |
from huggingface_hub import login
|
7 |
|
8 |
-
#
|
9 |
hf_token = os.environ.get("HF_TOKEN")
|
10 |
if not hf_token:
|
11 |
-
raise RuntimeError("Missing HF_TOKEN in secrets.
|
12 |
-
|
13 |
login(token=hf_token)
|
14 |
|
15 |
-
#
|
16 |
-
base_model_id = "unsloth/gemma-2-9b"
|
17 |
-
lora_model_id = "Futuresony/future_12_10_2024"
|
18 |
|
19 |
-
# Load tokenizer and model
|
20 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
21 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
|
|
25 |
model.eval()
|
26 |
|
|
|
27 |
def generate_response(message, history, system_message, max_tokens, temperature, top_p):
|
28 |
prompt = system_message + "\n\n"
|
29 |
-
|
30 |
for user_input, bot_response in history:
|
31 |
prompt += f"User: {user_input}\nAssistant: {bot_response}\n"
|
32 |
-
|
33 |
prompt += f"User: {message}\nAssistant:"
|
34 |
|
35 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
@@ -46,7 +48,7 @@ def generate_response(message, history, system_message, max_tokens, temperature,
|
|
46 |
final_response = response.split("Assistant:")[-1].strip()
|
47 |
return final_response
|
48 |
|
49 |
-
# Gradio
|
50 |
demo = gr.ChatInterface(
|
51 |
fn=generate_response,
|
52 |
additional_inputs=[
|
@@ -55,9 +57,10 @@ demo = gr.ChatInterface(
|
|
55 |
gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"),
|
56 |
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
|
57 |
],
|
58 |
-
title="LoRA
|
59 |
-
description="Chat with your fine-tuned
|
60 |
)
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
|
5 |
from peft import PeftModel
|
6 |
from huggingface_hub import login
|
7 |
|
8 |
+
# Login using HF token from secrets
|
9 |
hf_token = os.environ.get("HF_TOKEN")
|
10 |
if not hf_token:
|
11 |
+
raise RuntimeError("Missing HF_TOKEN in secrets.")
|
|
|
12 |
login(token=hf_token)
|
13 |
|
14 |
+
# Base and LoRA model paths
|
15 |
+
base_model_id = "unsloth/gemma-2-9b"
|
16 |
+
lora_model_id = "Futuresony/future_12_10_2024"
|
17 |
|
18 |
+
# Load tokenizer and base model
|
19 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
20 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
base_model_id,
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
device_map="auto"
|
24 |
+
)
|
25 |
|
26 |
+
# Load LoRA weights
|
27 |
+
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
28 |
model.eval()
|
29 |
|
30 |
+
# Chat function
|
31 |
def generate_response(message, history, system_message, max_tokens, temperature, top_p):
|
32 |
prompt = system_message + "\n\n"
|
|
|
33 |
for user_input, bot_response in history:
|
34 |
prompt += f"User: {user_input}\nAssistant: {bot_response}\n"
|
|
|
35 |
prompt += f"User: {message}\nAssistant:"
|
36 |
|
37 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
48 |
final_response = response.split("Assistant:")[-1].strip()
|
49 |
return final_response
|
50 |
|
51 |
+
# Gradio interface
|
52 |
demo = gr.ChatInterface(
|
53 |
fn=generate_response,
|
54 |
additional_inputs=[
|
|
|
57 |
gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"),
|
58 |
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
|
59 |
],
|
60 |
+
title="LoRA Chat Assistant (Gemma-2)",
|
61 |
+
description="Chat with your fine-tuned Gemma-2 LoRA model"
|
62 |
)
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
demo.launch()
|
66 |
+
|