Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,62 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
from peft import PeftModel
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
model.eval()
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
# Define the chat function
|
18 |
-
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
19 |
-
prompt = system_message + "\n"
|
20 |
-
for user, bot in history:
|
21 |
-
prompt += f"User: {user}\nAssistant: {bot}\n"
|
22 |
prompt += f"User: {message}\nAssistant:"
|
23 |
|
24 |
-
|
25 |
-
|
|
|
26 |
max_new_tokens=max_tokens,
|
27 |
temperature=temperature,
|
28 |
top_p=top_p,
|
29 |
do_sample=True,
|
30 |
-
|
31 |
-
)
|
32 |
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
#
|
36 |
demo = gr.ChatInterface(
|
37 |
-
|
38 |
additional_inputs=[
|
39 |
-
gr.Textbox(value="You are a
|
40 |
-
gr.Slider(
|
41 |
-
gr.Slider(
|
42 |
-
gr.Slider(
|
43 |
],
|
|
|
|
|
44 |
)
|
45 |
|
46 |
if __name__ == "__main__":
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from peft import PeftModel
|
6 |
+
from huggingface_hub import login
|
7 |
|
8 |
+
# Authenticate with Hugging Face using secret HF_TOKEN
|
9 |
+
hf_token = os.environ.get("HF_TOKEN")
|
10 |
+
if not hf_token:
|
11 |
+
raise RuntimeError("Missing HF_TOKEN in secrets. Please add it in your Space settings.")
|
12 |
|
13 |
+
login(token=hf_token)
|
14 |
+
|
15 |
+
# Load base model and LoRA adapter
|
16 |
+
base_model_id = "unsloth/gemma-2-9b" # Or your base model
|
17 |
+
lora_model_id = "Futuresony/future_12_10_2024" # Your LoRA fine-tuned model
|
18 |
+
|
19 |
+
# Load tokenizer and model
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
21 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, torch_dtype=torch.float16, device_map="auto")
|
22 |
+
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
23 |
+
|
24 |
+
# Ensure model is in evaluation mode
|
25 |
model.eval()
|
26 |
|
27 |
+
def generate_response(message, history, system_message, max_tokens, temperature, top_p):
|
28 |
+
prompt = system_message + "\n\n"
|
29 |
+
|
30 |
+
for user_input, bot_response in history:
|
31 |
+
prompt += f"User: {user_input}\nAssistant: {bot_response}\n"
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
prompt += f"User: {message}\nAssistant:"
|
34 |
|
35 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
36 |
+
outputs = model.generate(
|
37 |
+
**inputs,
|
38 |
max_new_tokens=max_tokens,
|
39 |
temperature=temperature,
|
40 |
top_p=top_p,
|
41 |
do_sample=True,
|
42 |
+
pad_token_id=tokenizer.eos_token_id
|
43 |
+
)
|
44 |
|
45 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
+
final_response = response.split("Assistant:")[-1].strip()
|
47 |
+
return final_response
|
48 |
|
49 |
+
# Gradio ChatInterface
|
50 |
demo = gr.ChatInterface(
|
51 |
+
fn=generate_response,
|
52 |
additional_inputs=[
|
53 |
+
gr.Textbox(value="You are a helpful assistant.", label="System Message"),
|
54 |
+
gr.Slider(50, 1024, value=256, step=1, label="Max Tokens"),
|
55 |
+
gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"),
|
56 |
+
gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
|
57 |
],
|
58 |
+
title="LoRA AI Chat Assistant",
|
59 |
+
description="Chat with your fine-tuned model using LoRA adapter."
|
60 |
)
|
61 |
|
62 |
if __name__ == "__main__":
|