Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is my app.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import re
|
6 |
+
import warnings
|
7 |
+
import time
|
8 |
+
import json
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
10 |
+
from sentence_transformers import SentenceTransformer, util
|
11 |
+
import gspread
|
12 |
+
from google.auth import default
|
13 |
+
from tqdm import tqdm
|
14 |
+
from duckduckgo_search import DDGS
|
15 |
+
import spacy
|
16 |
+
from pathlib import Path
|
17 |
+
import base64
|
18 |
+
|
19 |
+
# Suppress warnings
|
20 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
21 |
+
|
22 |
+
# --- Configuration ---
|
23 |
+
SHEET_ID = "19ipxC2vHYhpXCefpxpIkpeYdI43a1Ku2kYwecgUULIw" # Your Google Sheet ID
|
24 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Get Hugging Face token from Space Secrets
|
25 |
+
GOOGLE_SERVICE_ACCOUNT_KEY_BASE64 = os.getenv("GOOGLE_SERVICE_ACCOUNT_KEY_BASE64")
|
26 |
+
|
27 |
+
# Changed model_id to Gemma 2B for CPU
|
28 |
+
model_id = "google/gemma-2b" # Using Gemma 2B
|
29 |
+
|
30 |
+
# --- Constants for Prompting and Validation ---
|
31 |
+
SEARCH_MARKER = "ACTION: SEARCH:"
|
32 |
+
BUSINESS_LOOKUP_MARKER = "ACTION: LOOKUP_BUSINESS_INFO:"
|
33 |
+
ANSWER_DIRECTLY_MARKER = "ACTION: ANSWER_DIRECTLY:"
|
34 |
+
BUSINESS_LOOKUP_VALIDATION_THRESHOLD = 0.6
|
35 |
+
SEARCH_VALIDATION_THRESHOLD = 0.6
|
36 |
+
PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD = 0.5
|
37 |
+
|
38 |
+
# --- Global variables to load once ---
|
39 |
+
tokenizer = None
|
40 |
+
model = None
|
41 |
+
nlp = None # SpaCy model
|
42 |
+
embedder = None # Sentence Transformer
|
43 |
+
data = [] # Google Sheet data
|
44 |
+
descriptions = []
|
45 |
+
embeddings = torch.tensor([]) # Google Sheet embeddings
|
46 |
+
|
47 |
+
# --- Loading Functions (Run once on startup) ---
|
48 |
+
|
49 |
+
def load_spacy_model():
|
50 |
+
"""Loads or downloads the spaCy model."""
|
51 |
+
model_name = "en_core_web_sm"
|
52 |
+
try:
|
53 |
+
print(f"Loading spaCy model '{model_name}'...")
|
54 |
+
nlp_model = spacy.load(model_name)
|
55 |
+
print(f"SpaCy model '{model_name}' loaded.")
|
56 |
+
return nlp_model
|
57 |
+
except OSError:
|
58 |
+
print(f"SpaCy model '{model_name}' not found locally. Attempting download...")
|
59 |
+
# For HF Spaces, ensuring it's in requirements.txt is key.
|
60 |
+
# We'll assume requirements.txt handles installation, and try loading again.
|
61 |
+
print("Assuming 'en_core_web_sm' is installed via requirements.txt. Attempting to load...")
|
62 |
+
try:
|
63 |
+
nlp_model = spacy.load(model_name)
|
64 |
+
print(f"SpaCy model '{model_name}' loaded after assumed installation.")
|
65 |
+
return nlp_model
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Failed to load spaCy model '{model_name}' after assumed installation: {e}")
|
68 |
+
print("SpaCy will not be available.")
|
69 |
+
return None # Return None if loading fails
|
70 |
+
|
71 |
+
def load_sentence_transformer():
|
72 |
+
"""Loads the Sentence Transformer model."""
|
73 |
+
print("Loading Sentence Transformer...")
|
74 |
+
try:
|
75 |
+
embedder_model = SentenceTransformer("all-MiniLM-L6-v2")
|
76 |
+
print("Sentence Transformer loaded.")
|
77 |
+
return embedder_model
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Error loading Sentence Transformer: {e}")
|
80 |
+
return None
|
81 |
+
|
82 |
+
def load_google_sheet_data(sheet_id, service_account_key_base64):
|
83 |
+
"""Authenticates and loads data from Google Sheet."""
|
84 |
+
print(f"Attempting to load Google Sheet data from ID: {sheet_id}")
|
85 |
+
if not service_account_key_base64:
|
86 |
+
print("Warning: GOOGLE_SERVICE_ACCOUNT_KEY_BASE64 secret is not set. Cannot access Google Sheets.")
|
87 |
+
return [], [], torch.tensor([])
|
88 |
+
|
89 |
+
try:
|
90 |
+
# Decode the base64 key
|
91 |
+
key_bytes = base64.b64decode(service_account_key_base64)
|
92 |
+
key_dict = json.loads(key_bytes)
|
93 |
+
|
94 |
+
# Authenticate using the service account key
|
95 |
+
# Use service_account.Credentials.from_service_account_info directly
|
96 |
+
from google.oauth2 import service_account
|
97 |
+
creds = service_account.Credentials.from_service_account_info(key_dict)
|
98 |
+
client = gspread.authorize(creds)
|
99 |
+
|
100 |
+
sheet = client.open_by_key(sheet_id).sheet1
|
101 |
+
print(f"Successfully opened Google Sheet with ID: {sheet_id}")
|
102 |
+
sheet_data = sheet.get_all_records()
|
103 |
+
|
104 |
+
if not sheet_data:
|
105 |
+
print(f"Warning: No data records found in Google Sheet with ID: {sheet_id}")
|
106 |
+
return [], [], torch.tensor([])
|
107 |
+
|
108 |
+
filtered_data = [row for row in sheet_data if row.get('Service') and row.get('Description')]
|
109 |
+
if not filtered_data:
|
110 |
+
print("Warning: Filtered data is empty after checking for 'Service' and 'Description'.")
|
111 |
+
return [], [], torch.tensor([])
|
112 |
+
|
113 |
+
if not filtered_data or 'Service' not in filtered_data[0] or 'Description' not in filtered_data[0]:
|
114 |
+
print("Error: Filtered Google Sheet data must contain 'Service' and 'Description' columns.")
|
115 |
+
return [], [], torch.tensor([])
|
116 |
+
|
117 |
+
services = [row["Service"] for row in filtered_data]
|
118 |
+
descriptions = [row["Description"] for row in filtered_data]
|
119 |
+
print(f"Loaded {len(descriptions)} entries from Google Sheet for embedding.")
|
120 |
+
|
121 |
+
# embeddings will be encoded after embedder is loaded
|
122 |
+
return filtered_data, descriptions, None # Return descriptions, embeddings encoded later
|
123 |
+
|
124 |
+
except gspread.exceptions.SpreadsheetNotFound:
|
125 |
+
print(f"Error: Google Sheet with ID '{sheet_id}' not found.")
|
126 |
+
print("Please check the SHEET_ID and ensure the service account has access.")
|
127 |
+
return [], [], torch.tensor([])
|
128 |
+
except Exception as e:
|
129 |
+
print(f"An error occurred while accessing the Google Sheet: {e}")
|
130 |
+
return [], [], torch.tensor([])
|
131 |
+
|
132 |
+
|
133 |
+
def load_llm_model(model_id, hf_token):
|
134 |
+
"""Loads the LLM in full precision (for CPU).""" # Modified description
|
135 |
+
print(f"Loading model {model_id} in full precision...")
|
136 |
+
if not hf_token:
|
137 |
+
print("Error: HF_TOKEN secret is not set. Cannot load Hugging Face model.")
|
138 |
+
return None, None
|
139 |
+
|
140 |
+
try:
|
141 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
142 |
+
if llm_tokenizer.pad_token is None:
|
143 |
+
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
144 |
+
|
145 |
+
# Load the model without quantization config
|
146 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
147 |
+
model_id,
|
148 |
+
token=hf_token,
|
149 |
+
device_map="auto", # This will likely map to 'cpu'
|
150 |
+
# Removed quantization_config=bnb_config
|
151 |
+
)
|
152 |
+
|
153 |
+
print(f"Model {model_id} loaded in full precision.")
|
154 |
+
return llm_model, llm_tokenizer
|
155 |
+
|
156 |
+
except Exception as e:
|
157 |
+
print(f"Error loading model {model_id}: {e}")
|
158 |
+
# Removed specific bitsandbytes message
|
159 |
+
print("Please ensure transformers, trl, peft, and accelerate are installed.")
|
160 |
+
print("Check your Hugging Face token.")
|
161 |
+
# Do not raise, return None to allow app to start without LLM
|
162 |
+
return None, None
|
163 |
+
|
164 |
+
# --- Load all assets on startup ---
|
165 |
+
print("Loading assets...")
|
166 |
+
nlp = load_spacy_model()
|
167 |
+
embedder = load_sentence_transformer()
|
168 |
+
data, descriptions, _ = load_google_sheet_data(SHEET_ID, GOOGLE_SERVICE_ACCOUNT_KEY_BASE64) # Load data and descriptions first
|
169 |
+
|
170 |
+
if embedder and descriptions:
|
171 |
+
print("Encoding Google Sheet descriptions...")
|
172 |
+
try:
|
173 |
+
embeddings = embedder.encode(descriptions, convert_to_tensor=True)
|
174 |
+
print("Encoding complete.")
|
175 |
+
except Exception as e:
|
176 |
+
print(f"Error during embedding: {e}")
|
177 |
+
embeddings = torch.tensor([]) # Ensure embeddings is an empty tensor on error
|
178 |
+
else:
|
179 |
+
print("Skipping embedding due to missing embedder or descriptions.")
|
180 |
+
embeddings = torch.tensor([]) # Ensure embeddings is an empty tensor if no descriptions
|
181 |
+
|
182 |
+
model, tokenizer = load_llm_model(model_id, HF_TOKEN)
|
183 |
+
|
184 |
+
# Check if essential components loaded
|
185 |
+
if not model or not tokenizer or not embedder or not nlp:
|
186 |
+
print("\nERROR: Essential components failed to load. The application may not function correctly.")
|
187 |
+
if not model: print("- LLM Model failed to load.")
|
188 |
+
if not tokenizer: print("- LLM Tokenizer failed to load.")
|
189 |
+
if not embedder: print("- Sentence Embedder failed to load.")
|
190 |
+
if not nlp: print("- spaCy Model failed to load.")
|
191 |
+
# Continue, but the main inference function will need checks
|
192 |
+
|
193 |
+
# --- Helper Functions (from your script) ---
|
194 |
+
|
195 |
+
# Function to perform DuckDuckGo Search and return results with URLs
|
196 |
+
def perform_duckduckgo_search(query, max_results=3):
|
197 |
+
"""
|
198 |
+
Performs a search using DuckDuckGo and returns a list of dictionaries.
|
199 |
+
Includes a delay to avoid rate limits.
|
200 |
+
"""
|
201 |
+
search_results_list = []
|
202 |
+
try:
|
203 |
+
time.sleep(1) # Add a delay before each search
|
204 |
+
with DDGS() as ddgs:
|
205 |
+
for r in ddgs.text(query, max_results=max_results):
|
206 |
+
search_results_list.append(r) # Append the dictionary directly
|
207 |
+
except Exception as e:
|
208 |
+
print(f"Error during DuckDuckgo search for '{query}': {e}")
|
209 |
+
return []
|
210 |
+
return search_results_list
|
211 |
+
|
212 |
+
# Function to retrieve relevant business info
|
213 |
+
def retrieve_business_info(query, data, embeddings, embedder, threshold=0.50):
|
214 |
+
"""
|
215 |
+
Retrieves relevant business information based on query similarity.
|
216 |
+
Returns a dictionary if a match above threshold is found, otherwise None.
|
217 |
+
Also returns the similarity score.
|
218 |
+
Uses the global embedder, data, and embeddings.
|
219 |
+
"""
|
220 |
+
if not data or (embeddings is None or embeddings.numel() == 0) or embedder is None:
|
221 |
+
print("Skipping business info retrieval: Data, embeddings or embedder not available.")
|
222 |
+
return None, 0.0
|
223 |
+
|
224 |
+
try:
|
225 |
+
user_embedding = embedder.encode(query, convert_to_tensor=True)
|
226 |
+
cos_scores = util.cos_sim(user_embedding, embeddings)[0]
|
227 |
+
best_score = cos_scores.max().item()
|
228 |
+
|
229 |
+
if best_score > threshold:
|
230 |
+
best_match_idx = cos_scores.argmax().item()
|
231 |
+
best_match = data[best_match_idx]
|
232 |
+
return best_match, best_score
|
233 |
+
else:
|
234 |
+
return None, best_score
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Error during business information retrieval: {e}")
|
237 |
+
return None, 0.0
|
238 |
+
|
239 |
+
# Function to split user query into potential sub-queries using spaCy
|
240 |
+
def split_query(query):
|
241 |
+
"""Splits a user query into potential sub-queries using spaCy."""
|
242 |
+
if nlp is None:
|
243 |
+
print("SpaCy model not loaded. Cannot split query.")
|
244 |
+
return [query] # Return original query if nlp is not available
|
245 |
+
|
246 |
+
try:
|
247 |
+
doc = nlp(query)
|
248 |
+
sentences = [sent.text.strip() for sent in doc.sents]
|
249 |
+
if len(sentences) == 1:
|
250 |
+
parts = re.split(r',| and (who|what|where|when|why|how|is|are|can|tell me about)|;', query, flags=re.IGNORECASE)
|
251 |
+
parts = [part.strip() for part in parts if part is not None and part.strip()]
|
252 |
+
if len(parts) <= 1:
|
253 |
+
return [query]
|
254 |
+
return parts
|
255 |
+
return sentences
|
256 |
+
except Exception as e:
|
257 |
+
print(f"Error during query splitting: {e}")
|
258 |
+
return [query] # Return original query on error
|
259 |
+
|
260 |
+
# --- Pass 1 System Prompt ---
|
261 |
+
pass1_instructions_action = """You are a helpful assistant for a business. Your primary goal in this first step is to analyze the user's query and decide which actions are needed to answer it.
|
262 |
+
|
263 |
+
You have analyzed the user's query and potentially broken it down into parts. For each part, a preliminary check was done to see if it matches known business information. The results of this check are provided below.
|
264 |
+
|
265 |
+
{business_check_summary}
|
266 |
+
|
267 |
+
Based on the user's query and the results of the business info check for each part, identify if you need to perform actions.
|
268 |
+
|
269 |
+
Output one or more actions, each on a new line, in the format:
|
270 |
+
ACTION: [ACTION_TYPE]: [Argument/Query for the action]
|
271 |
+
|
272 |
+
Possible actions:
|
273 |
+
1. **LOOKUP_BUSINESS_INFO**: If a part of the query asks about the business's services, prices, availability, or individuals mentioned in the business context, *and* the business info check for that part indicates a high relevance ({PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD:.2f} or higher). The argument should be the specific phrase or name to look up.
|
274 |
+
2. **SEARCH**: If a part of the query asks for current external information (e.g., current events, real-time data, general facts not in business info), *or* if a part that seems like it could be business info did *not* have a high relevance score in the preliminary check (below {PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD:.2f}). The argument should be the precise search query.
|
275 |
+
3. **ANSWER_DIRECTLY**: If the overall query is a simple greeting or can be answered from your general knowledge without lookup or search, *and* the business info check results indicate low relevance for all parts. The argument should be the direct answer here.
|
276 |
+
|
277 |
+
**Crucially:**
|
278 |
+
- **Prioritize LOOKUP_BUSINESS_INFO** for any part of the query where the preliminary business info check score was {PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD:.2f} or higher.
|
279 |
+
- Use **SEARCH** for parts about external information or where the business info check score was below {PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD:.2f}.
|
280 |
+
- If a part of the query is clearly external (like asking about current events or famous people) even if its business info score wasn't zero, you should likely use SEARCH for it.
|
281 |
+
- Do NOT output any other text besides the ACTION lines.
|
282 |
+
- If the results suggest a direct answer is sufficient, use ANSWER_DIRECTLY.
|
283 |
+
|
284 |
+
Now, analyze the following user query, considering the business info check results provided above, and output the required actions:
|
285 |
+
"""
|
286 |
+
|
287 |
+
# --- Pass 2 System Prompt ---
|
288 |
+
pass2_instructions_synthesize = """You are a helpful assistant for a business. You have been provided with the original user query, relevant Business Information (if found), and results from external searches (if performed).
|
289 |
+
|
290 |
+
Your task is to synthesize ALL the provided information to answer the user's original question concisely and accurately.
|
291 |
+
|
292 |
+
**Prioritize Business Information** for details about the business, its services, or individuals mentioned within that context.
|
293 |
+
Use the Search Results for current external information that was requested.
|
294 |
+
If information for a specific part of the question was not found in either Business Information or Search Results, use your general knowledge if possible, or state that the information could not be found.
|
295 |
+
|
296 |
+
Synthesize the information into a natural language response. Do NOT copy and paste raw context or strings like 'Business Information:' or 'SEARCH RESULTS:' or 'ACTION:' or the raw user query.
|
297 |
+
|
298 |
+
After your answer, generate a few concise follow-up questions that a user might ask based on the previous turn's conversation and your response. List these questions clearly at the end of your response.
|
299 |
+
When search results were used to answer the question, list the URLs from the search results you used under a "Sources:" heading at the very end.
|
300 |
+
"""
|
301 |
+
|
302 |
+
# --- Main Inference Function for Gradio ---
|
303 |
+
# This function will be called every time the user submits a query
|
304 |
+
# chat_history is now a parameter managed by Gradio's State
|
305 |
+
def respond(user_input, chat_history):
|
306 |
+
"""
|
307 |
+
Processes user input, performs actions (lookup/search), and generates a response.
|
308 |
+
Manages chat history within Gradio state.
|
309 |
+
"""
|
310 |
+
# Check if models loaded successfully
|
311 |
+
if model is None or tokenizer is None or embedder is None or nlp is None:
|
312 |
+
return "", chat_history + [(user_input, "Sorry, the application failed to load necessary components. Please try again later or contact the administrator.")] # Return empty string for input, updated history
|
313 |
+
|
314 |
+
original_user_input = user_input
|
315 |
+
|
316 |
+
# Initialize action results containers for this turn
|
317 |
+
search_results_dicts = []
|
318 |
+
business_lookup_results_formatted = []
|
319 |
+
response_pass1_raw = "" # To store the raw actions generated by Pass 1
|
320 |
+
|
321 |
+
# --- Pre-Pass 1: Programmatic Business Info Check for Query Parts ---
|
322 |
+
query_parts = split_query(original_user_input)
|
323 |
+
business_check_results = []
|
324 |
+
overall_pre_pass1_score = 0.0
|
325 |
+
|
326 |
+
print("\n--- Processing new user query ---")
|
327 |
+
print(f"User: {user_input}")
|
328 |
+
print("Performing programmatic business info check on query parts...")
|
329 |
+
|
330 |
+
if query_parts:
|
331 |
+
for i, part in enumerate(query_parts):
|
332 |
+
match, score = retrieve_business_info(part, data, embeddings, embedder, threshold=0.0)
|
333 |
+
business_check_results.append({"part": part, "score": score, "match": match})
|
334 |
+
print(f"- Part '{part}': Score {score:.4f}")
|
335 |
+
overall_pre_pass1_score = max(overall_pre_pass1_score, score)
|
336 |
+
else:
|
337 |
+
match, score = retrieve_business_info(original_user_input, data, embeddings, embedder, threshold=0.0)
|
338 |
+
business_check_results.append({"part": original_user_input, "score": score, "match": match})
|
339 |
+
print(f"- Part '{original_user_input}': Score {score:.4f}")
|
340 |
+
overall_pre_pass1_score = score
|
341 |
+
|
342 |
+
is_likely_direct_answer = overall_pre_pass1_score < PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD and len(query_parts) <= 2
|
343 |
+
|
344 |
+
# Format business check summary for Pass 1 prompt
|
345 |
+
business_check_summary = "Business Info Check Results for Query Parts:\n"
|
346 |
+
if business_check_results:
|
347 |
+
for result in business_check_results:
|
348 |
+
status = "High Relevance" if result['score'] >= PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD else "Low Relevance"
|
349 |
+
business_check_summary += f"- Part '{result['part']}': Score {result['score']:.4f} ({status})\n"
|
350 |
+
else:
|
351 |
+
business_check_summary += "- No parts identified or check skipped.\n"
|
352 |
+
business_check_summary += "\n"
|
353 |
+
|
354 |
+
# --- Pass 1: Action Identification (if not direct answer) ---
|
355 |
+
requested_actions = []
|
356 |
+
answer_directly_provided = None
|
357 |
+
|
358 |
+
if is_likely_direct_answer:
|
359 |
+
print("Programmatically determined likely direct answer.")
|
360 |
+
response_pass1_raw = f"ACTION: ANSWER_DIRECTLY: " # Signal Pass 2
|
361 |
+
|
362 |
+
else:
|
363 |
+
pass1_user_message_content = pass1_instructions_action.format(
|
364 |
+
business_check_summary=business_check_summary,
|
365 |
+
PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD=PRE_PASS1_BUSINESS_PART_LOOKUP_THRESHOLD # Pass threshold to prompt
|
366 |
+
) + "\n\nUser Query: " + user_input
|
367 |
+
|
368 |
+
# Create a temporary history for Pass 1 focusing only on the current turn's user query and instructions
|
369 |
+
temp_chat_history_pass1 = [{"role": "user", "content": pass1_user_message_content}]
|
370 |
+
|
371 |
+
try:
|
372 |
+
prompt_pass1 = tokenizer.apply_chat_template(
|
373 |
+
temp_chat_history_pass1,
|
374 |
+
tokenize=False,
|
375 |
+
add_generation_prompt=True
|
376 |
+
)
|
377 |
+
# print("\n--- Pass 1 Prompt ---") # Debug print
|
378 |
+
# print(prompt_pass1)
|
379 |
+
# print("---------------------")
|
380 |
+
|
381 |
+
generation_config_pass1 = GenerationConfig(
|
382 |
+
max_new_tokens=200,
|
383 |
+
do_sample=False,
|
384 |
+
temperature=0.1,
|
385 |
+
eos_token_id=tokenizer.eos_token_id,
|
386 |
+
pad_token_id=tokenizer.pad_token_id,
|
387 |
+
use_cache=True
|
388 |
+
)
|
389 |
+
|
390 |
+
input_ids_pass1 = tokenizer(prompt_pass1, return_tensors="pt").input_ids # Removed .to(model.device) as device_map="auto" handles it
|
391 |
+
if model and input_ids_pass1.numel() > 0: # Added check for model
|
392 |
+
outputs_pass1 = model.generate(
|
393 |
+
input_ids=input_ids_pass1,
|
394 |
+
generation_config=generation_config_pass1,
|
395 |
+
)
|
396 |
+
prompt_length_pass1 = input_ids_pass1.shape[1]
|
397 |
+
if outputs_pass1.shape[1] > prompt_length_pass1:
|
398 |
+
generated_tokens_pass1 = outputs_pass1[0, prompt_length_pass1:]
|
399 |
+
response_pass1_raw = tokenizer.decode(generated_tokens_pass1, skip_special_tokens=True).strip()
|
400 |
+
else:
|
401 |
+
response_pass1_raw = "" # No actions generated
|
402 |
+
else:
|
403 |
+
response_pass1_raw = "" # Empty input or model not loaded
|
404 |
+
|
405 |
+
# print("\n--- Raw Pass 1 Response ---") # Debug print
|
406 |
+
# print(response_pass1_raw)
|
407 |
+
# print("--------------------------")
|
408 |
+
|
409 |
+
|
410 |
+
except Exception as e:
|
411 |
+
print(f"Error during Pass 1 (Action Identification): {e}")
|
412 |
+
# If Pass 1 fails, fallback to attempting a direct answer in Pass 2
|
413 |
+
response_pass1_raw = f"ACTION: ANSWER_DIRECTLY: Error in Pass 1 - {e}"
|
414 |
+
|
415 |
+
|
416 |
+
# --- Parse Model's Requested Actions with Validation ---
|
417 |
+
# Always parse even if flagged for direct answer to handle potential Pass 1 errors
|
418 |
+
if response_pass1_raw:
|
419 |
+
lines = response_pass1_raw.strip().split('\n')
|
420 |
+
for line in lines:
|
421 |
+
line = line.strip()
|
422 |
+
if line.startswith(SEARCH_MARKER):
|
423 |
+
query = line[len(SEARCH_MARKER):].strip()
|
424 |
+
if query:
|
425 |
+
# Validate SEARCH Action
|
426 |
+
_, score = retrieve_business_info(query, data, embeddings, embedder, threshold=0.0)
|
427 |
+
if score < SEARCH_VALIDATION_THRESHOLD:
|
428 |
+
requested_actions.append(("SEARCH", query))
|
429 |
+
print(f"Validated Search Action for '{query}' (Score: {score:.4f})")
|
430 |
+
else:
|
431 |
+
print(f"Rejected Search Action for '{query}' (Score: {score:.4f}) - Too similar to business data.")
|
432 |
+
elif line.startswith(BUSINESS_LOOKUP_MARKER):
|
433 |
+
query = line[len(BUSINESS_LOOKUP_MARKER):].strip()
|
434 |
+
if query:
|
435 |
+
# Validate Business Lookup Query
|
436 |
+
match, score = retrieve_business_info(query, data, embeddings, embedder, threshold=0.0) # Use low threshold for scoring
|
437 |
+
if score > BUSINESS_LOOKUP_VALIDATION_THRESHOLD:
|
438 |
+
requested_actions.append(("LOOKUP_BUSINESS_INFO", query))
|
439 |
+
print(f"Validated Business Lookup Action for '{query}' (Score: {score:.4f})")
|
440 |
+
else:
|
441 |
+
print(f"Rejected Business Lookup Action for '{query}' (Score: {score:.4f}) - Below validation threshold.")
|
442 |
+
elif line.startswith(ANSWER_DIRECTLY_MARKER):
|
443 |
+
answer = line[len(ANSWER_DIRECTLY_MARKER):].strip()
|
444 |
+
answer_directly_provided = answer if answer else original_user_input # Use explicit answer if provided, else original query hint
|
445 |
+
requested_actions = [] # Clear other actions if DIRECT_ANSWER is given
|
446 |
+
break # Exit action parsing loop
|
447 |
+
|
448 |
+
# --- Execute Actions (Search and Lookup) ---
|
449 |
+
# Only execute actions if ANSWER_DIRECTLY was NOT the primary outcome of Pass 1
|
450 |
+
# and there are validated requested actions.
|
451 |
+
context_for_pass2 = ""
|
452 |
+
|
453 |
+
if requested_actions:
|
454 |
+
print("Executing requested actions...")
|
455 |
+
for action_type, query in requested_actions:
|
456 |
+
if action_type == "SEARCH":
|
457 |
+
print(f"Performing search for: '{query}'")
|
458 |
+
results = perform_duckduckgo_search(query)
|
459 |
+
if results:
|
460 |
+
search_results_dicts.extend(results)
|
461 |
+
print(f"Found {len(results)} search results.")
|
462 |
+
else:
|
463 |
+
print(f"No search results found for '{query}'.")
|
464 |
+
|
465 |
+
elif action_type == "LOOKUP_BUSINESS_INFO":
|
466 |
+
print(f"Performing business info lookup for: '{query}'")
|
467 |
+
match, score = retrieve_business_info(query, data, embeddings, embedder, threshold=retrieve_business_info.__defaults__[0]) # Use default threshold for retrieval
|
468 |
+
print(f"Actual lookup score for '{query}': {score:.4f} (Threshold: {retrieve_business_info.__defaults__[0]})")
|
469 |
+
if match:
|
470 |
+
formatted_match = f"""Service: {match.get('Service', 'N/A')}
|
471 |
+
Description: {match.get('Description', 'N/A')}
|
472 |
+
Price: {match.get('Price', 'N/A')}
|
473 |
+
Available: {match.get('Available', 'N/A')}"""
|
474 |
+
business_lookup_results_formatted.append(formatted_match)
|
475 |
+
print(f"Found business info match.")
|
476 |
+
else:
|
477 |
+
print(f"No business info match found for '{query}' at threshold {retrieve_business_info.__defaults__[0]}.")
|
478 |
+
|
479 |
+
# --- Prepare Context for Pass 2 based on executed actions ---
|
480 |
+
if business_lookup_results_formatted:
|
481 |
+
context_for_pass2 += "Business Information (Use this for questions about the business):\n"
|
482 |
+
context_for_pass2 += "\n---\n".join(business_lookup_results_formatted)
|
483 |
+
context_for_pass2 += "\n\n"
|
484 |
+
|
485 |
+
if search_results_dicts:
|
486 |
+
context_for_pass2 += "SEARCH RESULTS (Use this for current external information):\n"
|
487 |
+
aggregated_search_results_formatted = []
|
488 |
+
for result in search_results_dicts:
|
489 |
+
aggregated_search_results_formatted.append(f"Title: {result.get('title', 'N/A')}\nSnippet: {result.get('body', 'N/A')}\nURL: {result.get('href', 'N/A')}")
|
490 |
+
context_for_pass2 += "\n---\n".join(aggregated_search_results_formatted) + "\n\n"
|
491 |
+
|
492 |
+
if requested_actions and not business_lookup_results_formatted and not search_results_dicts:
|
493 |
+
context_for_pass2 = "Note: No relevant information was found in Business Information or via Search for your query."
|
494 |
+
print("Note: No results were found for the requested actions.")
|
495 |
+
|
496 |
+
# If ANSWER_DIRECTLY was determined (either programmatically or by Pass 1 model output)
|
497 |
+
if answer_directly_provided is not None:
|
498 |
+
print(f"Handling as direct answer: {answer_directly_provided}")
|
499 |
+
# Provide a simple context indicating it's a direct answer scenario
|
500 |
+
context_for_pass2 = "Note: This query is a simple request or greeting."
|
501 |
+
if answer_directly_provided != original_user_input and answer_directly_provided != "":
|
502 |
+
context_for_pass2 += f" Initial suggestion from action step: {answer_directly_provided}"
|
503 |
+
# Ensure no search/lookup results are included if it was flagged as direct answer
|
504 |
+
search_results_dicts = []
|
505 |
+
business_lookup_results_formatted = []
|
506 |
+
|
507 |
+
|
508 |
+
# If no actions were requested or direct answer flagged, and no results found...
|
509 |
+
# This handles cases where Pass 1 failed or generated nothing useful
|
510 |
+
if not requested_actions and answer_directly_provided is None:
|
511 |
+
if response_pass1_raw.strip():
|
512 |
+
print("Warning: Pass 1 did not result in valid actions or a direct answer.")
|
513 |
+
context_for_pass2 = f"Error: Could not determine actions from Pass 1 response: '{response_pass1_raw}'."
|
514 |
+
else:
|
515 |
+
print("Warning: Pass 1 generated an empty response.")
|
516 |
+
context_for_pass2 = "Error: Pass 1 generated an empty response."
|
517 |
+
# In this case, we will still try Pass 2 with the limited context
|
518 |
+
|
519 |
+
|
520 |
+
# --- Pass 2: Synthesize and Respond ---
|
521 |
+
final_response = "Sorry, I couldn't generate a response." # Default response on error
|
522 |
+
|
523 |
+
if model is not None and tokenizer is not None:
|
524 |
+
pass2_user_message_content = pass2_instructions_synthesize + "\n\nOriginal User Query: " + original_user_input + "\n\n" + context_for_pass2
|
525 |
+
|
526 |
+
# --- Chat History Management for Pass 2 ---
|
527 |
+
# Gradio's chat history state is [(User1, Bot1), (User2, Bot2), ...]
|
528 |
+
# We need to format the history correctly for the model template
|
529 |
+
# The Pass 2 prompt should build upon the *actual* conversation history, not just the Pass 2 context message.
|
530 |
+
# Let's build the chat history for the model template
|
531 |
+
model_chat_history = []
|
532 |
+
for user_msg, bot_msg in chat_history:
|
533 |
+
model_chat_history.append({"role": "user", "content": user_msg})
|
534 |
+
model_chat_history.append({"role": "assistant", "content": bot_msg})
|
535 |
+
|
536 |
+
# Add the *current* user query and the Pass 2 specific content as the latest turn
|
537 |
+
# The Pass 2 instructions and context are part of the *current* user turn's input to the model
|
538 |
+
model_chat_history.append({"role": "user", "content": pass2_user_message_content})
|
539 |
+
|
540 |
+
try:
|
541 |
+
prompt_pass2 = tokenizer.apply_chat_template(
|
542 |
+
model_chat_history,
|
543 |
+
tokenize=False,
|
544 |
+
add_generation_prompt=True # Add the assistant prompt token to start the response
|
545 |
+
)
|
546 |
+
# print("\n--- Pass 2 Prompt ---") # Debug print
|
547 |
+
# print(prompt_pass2)
|
548 |
+
# print("---------------------")
|
549 |
+
|
550 |
+
|
551 |
+
generation_config_pass2 = GenerationConfig(
|
552 |
+
max_new_tokens=1500, # Generate a longer response
|
553 |
+
do_sample=True,
|
554 |
+
temperature=0.7,
|
555 |
+
top_k=50,
|
556 |
+
top_p=0.95,
|
557 |
+
repetition_penalty=1.1,
|
558 |
+
eos_token_id=tokenizer.eos_token_id,
|
559 |
+
pad_token_id=tokenizer.pad_token_id,
|
560 |
+
use_cache=True
|
561 |
+
)
|
562 |
+
|
563 |
+
input_ids_pass2 = tokenizer(prompt_pass2, return_tensors="pt").input_ids # Removed .to(model.device)
|
564 |
+
if model and input_ids_pass2.numel() > 0: # Added check for model
|
565 |
+
outputs_pass2 = model.generate(
|
566 |
+
input_ids=input_ids_pass2,
|
567 |
+
generation_config=generation_config_pass2,
|
568 |
+
)
|
569 |
+
|
570 |
+
prompt_length_pass2 = input_ids_pass2.shape[1]
|
571 |
+
if outputs_pass2.shape[1] > prompt_length_pass2:
|
572 |
+
generated_tokens_pass2 = outputs_pass2[0, prompt_length_pass2:]
|
573 |
+
final_response = tokenizer.decode(generated_tokens_pass2, skip_special_tokens=True).strip()
|
574 |
+
else:
|
575 |
+
final_response = "..." # Indicate potentially empty response
|
576 |
+
else:
|
577 |
+
final_response = "Error: Model or empty input for Pass 2." # Indicate model not loaded or empty input
|
578 |
+
|
579 |
+
|
580 |
+
except Exception as gen_error:
|
581 |
+
print(f"Error during model generation in Pass 2: {gen_error}")
|
582 |
+
final_response = "Error generating response in Pass 2."
|
583 |
+
|
584 |
+
|
585 |
+
# --- Post-process Final Response from Pass 2 ---
|
586 |
+
cleaned_response = final_response
|
587 |
+
# Filter out the Pass 2 instructions and context markers that might bleed through
|
588 |
+
lines = cleaned_response.split('\n')
|
589 |
+
cleaned_lines = [line for line in lines if not line.strip().lower().startswith("business information")
|
590 |
+
and not line.strip().lower().startswith("search results")
|
591 |
+
and not line.strip().startswith("---")
|
592 |
+
and not line.strip().lower().startswith("original user query:")
|
593 |
+
and not line.strip().lower().startswith("you are a helpful assistant for a business.")]
|
594 |
+
|
595 |
+
cleaned_response = "\n".join(cleaned_lines).strip()
|
596 |
+
|
597 |
+
# Extract and list URLs from the search results that were actually used
|
598 |
+
# This assumes the model uses the provided snippets with URLs
|
599 |
+
urls_to_list = [result.get('href') for result in search_results_dicts if result.get('href')]
|
600 |
+
urls_to_list = list(dict.fromkeys(urls_to_list)) # Remove duplicates
|
601 |
+
|
602 |
+
# Only add Sources if search was performed AND results were found
|
603 |
+
if search_results_dicts and urls_to_list:
|
604 |
+
cleaned_response += "\n\nSources:\n" + "\n".join(urls_to_list)
|
605 |
+
|
606 |
+
final_response = cleaned_response
|
607 |
+
|
608 |
+
# Check if the final response is empty or just whitespace after cleaning
|
609 |
+
if not final_response.strip():
|
610 |
+
final_response = "Sorry, I couldn't generate a meaningful response based on the information found."
|
611 |
+
print("Warning: Final response was empty after cleaning.")
|
612 |
+
|
613 |
+
else: # Model or tokenizer not loaded (this check is at the very beginning of the function)
|
614 |
+
final_response = "Sorry, the core language model is not available."
|
615 |
+
print("Error: LLM model or tokenizer not loaded for Pass 2.")
|
616 |
+
|
617 |
+
|
618 |
+
# --- Update Chat History for Gradio ---
|
619 |
+
# Append the user's original message and the final bot response to the history state
|
620 |
+
# The format is (user_input, bot_response)
|
621 |
+
updated_chat_history = chat_history + [(original_user_input, final_response)]
|
622 |
+
|
623 |
+
# Optional: Manage history length
|
624 |
+
max_history_pairs = 10 # Keep last 10 turns (20 messages total)
|
625 |
+
if len(updated_chat_history) > max_history_pairs:
|
626 |
+
updated_chat_history = updated_chat_history[-max_history_pairs:]
|
627 |
+
# print(f"History truncated. Keeping last {len(updated_chat_history)} turns.") # Debug print
|
628 |
+
|
629 |
+
# Return the updated history state and an empty string for the input box
|
630 |
+
return "", updated_chat_history
|