Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -66,32 +66,49 @@ def load_google_sheet_data(sheet_id, service_account_key_base64):
|
|
66 |
return [], [], torch.tensor([])
|
67 |
|
68 |
try:
|
69 |
-
|
70 |
key_bytes = base64.b64decode(service_account_key_base64)
|
71 |
key_dict = json.loads(key_bytes)
|
|
|
72 |
|
73 |
-
|
74 |
from google.oauth2 import service_account
|
75 |
creds = service_account.Credentials.from_service_account_info(key_dict)
|
76 |
client = gspread.authorize(creds)
|
|
|
77 |
|
|
|
|
|
|
|
|
|
78 |
sheet = client.open_by_key(sheet_id).sheet1
|
79 |
print(f"Successfully opened Google Sheet with ID: {sheet_id}")
|
|
|
|
|
80 |
sheet_data = sheet.get_all_records()
|
|
|
81 |
|
82 |
if not sheet_data:
|
83 |
print(f"Warning: No data records found in Google Sheet with ID: {sheet_id}")
|
84 |
return [], [], torch.tensor([])
|
85 |
|
|
|
86 |
filtered_data = [row for row in sheet_data if row.get('Service') and row.get('Description')]
|
|
|
|
|
87 |
if not filtered_data:
|
88 |
print("Warning: Filtered data is empty after checking for 'Service' and 'Description'.")
|
|
|
|
|
|
|
89 |
return [], [], torch.tensor([])
|
90 |
|
91 |
-
|
92 |
-
|
|
|
93 |
return [], [], torch.tensor([])
|
94 |
|
|
|
95 |
services = [row["Service"] for row in filtered_data]
|
96 |
descriptions = [row["Description"] for row in filtered_data]
|
97 |
print(f"Loaded {len(descriptions)} entries from Google Sheet for embedding.")
|
@@ -106,7 +123,6 @@ def load_google_sheet_data(sheet_id, service_account_key_base64):
|
|
106 |
print(f"An error occurred while accessing the Google Sheet: {e}")
|
107 |
return [], [], torch.tensor([])
|
108 |
|
109 |
-
|
110 |
def load_llm_model(model_id, hf_token):
|
111 |
"""Loads the LLM in full precision (for CPU)."""
|
112 |
print(f"Loading model {model_id} in full precision...")
|
|
|
66 |
return [], [], torch.tensor([])
|
67 |
|
68 |
try:
|
69 |
+
print("Decoding base64 key...")
|
70 |
key_bytes = base64.b64decode(service_account_key_base64)
|
71 |
key_dict = json.loads(key_bytes)
|
72 |
+
print("Base64 key decoded and parsed.")
|
73 |
|
74 |
+
print("Authenticating with service account...")
|
75 |
from google.oauth2 import service_account
|
76 |
creds = service_account.Credentials.from_service_account_info(key_dict)
|
77 |
client = gspread.authorize(creds)
|
78 |
+
print("Authentication successful.")
|
79 |
|
80 |
+
print(f"Opening sheet with key '{sheet_id}'...")
|
81 |
+
# *** IMPORTANT: If your sheet is NOT the first sheet, change 'sheet1'
|
82 |
+
# *** For example, if your sheet is named 'Data', use:
|
83 |
+
# sheet = client.open_by_key(sheet_id).worksheet("Data")
|
84 |
sheet = client.open_by_key(sheet_id).sheet1
|
85 |
print(f"Successfully opened Google Sheet with ID: {sheet_id}")
|
86 |
+
|
87 |
+
print("Getting all records from the sheet...")
|
88 |
sheet_data = sheet.get_all_records()
|
89 |
+
print(f"Retrieved {len(sheet_data)} raw records from sheet.")
|
90 |
|
91 |
if not sheet_data:
|
92 |
print(f"Warning: No data records found in Google Sheet with ID: {sheet_id}")
|
93 |
return [], [], torch.tensor([])
|
94 |
|
95 |
+
print("Filtering data for 'Service' and 'Description' columns...")
|
96 |
filtered_data = [row for row in sheet_data if row.get('Service') and row.get('Description')]
|
97 |
+
print(f"Filtered down to {len(filtered_data)} records.")
|
98 |
+
|
99 |
if not filtered_data:
|
100 |
print("Warning: Filtered data is empty after checking for 'Service' and 'Description'.")
|
101 |
+
# Check if headers exist at all if filtered_data is empty but sheet_data isn't
|
102 |
+
if sheet_data and ('Service' not in sheet_data[0] or 'Description' not in sheet_data[0]):
|
103 |
+
print("Error: 'Service' or 'Description' headers are missing or misspelled in the sheet.")
|
104 |
return [], [], torch.tensor([])
|
105 |
|
106 |
+
# Re-checking column existence on filtered_data (redundant after filter but safe)
|
107 |
+
if 'Service' not in filtered_data[0] or 'Description' not in filtered_data[0]:
|
108 |
+
print("Error: Filtered Google Sheet data must contain 'Service' and 'Description' columns. This should not happen if filtering worked.")
|
109 |
return [], [], torch.tensor([])
|
110 |
|
111 |
+
|
112 |
services = [row["Service"] for row in filtered_data]
|
113 |
descriptions = [row["Description"] for row in filtered_data]
|
114 |
print(f"Loaded {len(descriptions)} entries from Google Sheet for embedding.")
|
|
|
123 |
print(f"An error occurred while accessing the Google Sheet: {e}")
|
124 |
return [], [], torch.tensor([])
|
125 |
|
|
|
126 |
def load_llm_model(model_id, hf_token):
|
127 |
"""Loads the LLM in full precision (for CPU)."""
|
128 |
print(f"Loading model {model_id} in full precision...")
|