Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
import torch | |
# Use a CPU-compatible base model (replace this with your actual full-precision model) | |
base_model_id = "unsloth/gemma-2-9b" # Replace with real CPU-compatible model | |
lora_model_id = "import gradio as gr" | |
from huggingface_hub import InferenceClient | |
import os | |
# πΉ Hugging Face Credentials | |
HF_REPO = "Futuresony/gemma2-9b-lora-alpaca" | |
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
client = InferenceClient(HF_REPO, token=HF_TOKEN) | |
def format_alpaca_prompt(user_input, system_prompt, history): | |
"""Formats input in Alpaca/LLaMA style""" | |
history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history]) | |
prompt = f"""{system_prompt} | |
{history_str} | |
### Instruction: | |
{user_input} | |
### Response: | |
""" | |
return prompt | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
formatted_prompt = format_alpaca_prompt(message, system_message, history) | |
response = client.text_generation( | |
formatted_prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# β Extract only the response | |
cleaned_response = response.split("### Response:")[-1].strip() | |
history.append((message, cleaned_response)) # β Update history with the new message and response | |
yield cleaned_response # β Output only the answer | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch()" | |
# Load the base model on CPU | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_id, | |
torch_dtype=torch.float32, # Use float32 for CPU compatibility | |
device_map="cpu" | |
) | |
# Load the PEFT LoRA model | |
model = PeftModel.from_pretrained(base_model, lora_model_id) | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model_id) | |
# Chat function | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, bot_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if bot_msg: | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
# Generate response (simulated loop for streaming output) | |
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cpu") | |
outputs = model.generate( | |
inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
yield response | |
# Gradio UI | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |