FutureX / app.py
Futuresony's picture
Update app.py
09c34c9 verified
raw
history blame
3.63 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
# Use a CPU-compatible base model (replace this with your actual full-precision model)
base_model_id = "unsloth/gemma-2-9b" # Replace with real CPU-compatible model
lora_model_id = "import gradio as gr"
from huggingface_hub import InferenceClient
import os
# πŸ”Ή Hugging Face Credentials
HF_REPO = "Futuresony/gemma2-9b-lora-alpaca"
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
client = InferenceClient(HF_REPO, token=HF_TOKEN)
def format_alpaca_prompt(user_input, system_prompt, history):
"""Formats input in Alpaca/LLaMA style"""
history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history])
prompt = f"""{system_prompt}
{history_str}
### Instruction:
{user_input}
### Response:
"""
return prompt
def respond(message, history, system_message, max_tokens, temperature, top_p):
formatted_prompt = format_alpaca_prompt(message, system_message, history)
response = client.text_generation(
formatted_prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# βœ… Extract only the response
cleaned_response = response.split("### Response:")[-1].strip()
history.append((message, cleaned_response)) # βœ… Update history with the new message and response
yield cleaned_response # βœ… Output only the answer
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()"
# Load the base model on CPU
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
torch_dtype=torch.float32, # Use float32 for CPU compatibility
device_map="cpu"
)
# Load the PEFT LoRA model
model = PeftModel.from_pretrained(base_model, lora_model_id)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
# Chat function
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for user_msg, bot_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": message})
# Generate response (simulated loop for streaming output)
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cpu")
outputs = model.generate(
inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
yield response
# Gradio UI
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a friendly chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
if __name__ == "__main__":
demo.launch()