Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import requests
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
# Define models and their validation accuracies
|
| 8 |
+
model_options = {
|
| 9 |
+
"Model Name": {
|
| 10 |
+
"path": "model_name.h5",
|
| 11 |
+
"accuracy": 50
|
| 12 |
+
},
|
| 13 |
+
"Old Model": {
|
| 14 |
+
"path": "oldModel.h5",
|
| 15 |
+
"accuracy": 76
|
| 16 |
+
}
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
# Load the model from Hugging Face repo
|
| 20 |
+
def load_model(model_path):
|
| 21 |
+
# Here you would use the Hugging Face `transformers` library to load your model.
|
| 22 |
+
# However, since these are `.h5` models (likely Keras models), use the appropriate loader.
|
| 23 |
+
# This example assumes you have a custom loader function for Keras models.
|
| 24 |
+
from tensorflow.keras.models import load_model
|
| 25 |
+
return load_model(model_path)
|
| 26 |
+
|
| 27 |
+
def main():
|
| 28 |
+
st.title("Pneumonia Detection App")
|
| 29 |
+
|
| 30 |
+
model_name = st.selectbox("Select a model", list(model_options.keys()))
|
| 31 |
+
model_path = model_options[model_name]["path"]
|
| 32 |
+
model_accuracy = model_options[model_name]["accuracy"]
|
| 33 |
+
|
| 34 |
+
# Load the selected model
|
| 35 |
+
model = load_model(model_path)
|
| 36 |
+
|
| 37 |
+
st.write(f"Model: {model_name}")
|
| 38 |
+
st.write(f"Validation Accuracy: {model_accuracy}%")
|
| 39 |
+
|
| 40 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 41 |
+
|
| 42 |
+
if uploaded_file is not None:
|
| 43 |
+
image = Image.open(uploaded_file)
|
| 44 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 45 |
+
|
| 46 |
+
# Perform prediction using the model
|
| 47 |
+
# This part depends on how your model expects input.
|
| 48 |
+
# Here, you would preprocess the image and perform prediction.
|
| 49 |
+
# For example:
|
| 50 |
+
# img_array = preprocess_image(image)
|
| 51 |
+
# prediction = model.predict(img_array)
|
| 52 |
+
# st.write("Prediction:", prediction)
|
| 53 |
+
|
| 54 |
+
# Example placeholder for prediction output
|
| 55 |
+
st.write("Prediction: [Placeholder for actual prediction]")
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
main()
|