import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load the model and tokenizer model_name = 'FridayMaster/fine_tune_embedding' # Replace with your model's repository name tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Use the appropriate class # Define a function to generate responses def generate_response(prompt): # Tokenize the input prompt inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512) with torch.no_grad(): # Get the model output outputs = model(**inputs) # Process the output logits logits = outputs.logits predicted_class_id = logits.argmax().item() # Generate a response based on the predicted class response = f"Predicted class ID: {predicted_class_id}" return response # Create a Gradio interface iface = gr.Interface( fn=generate_response, inputs=gr.Textbox(label="Enter your message", placeholder="Type something here..."), outputs=gr.Textbox(label="Response"), title="Chatbot Interface", description="Interact with the fine-tuned chatbot model." ) # Launch the Gradio app if __name__ == "__main__": iface.launch()