Spaces:
Sleeping
Sleeping
Commit
·
bcb79da
1
Parent(s):
5ed0a9c
controlnet
Browse files- app.py +376 -4
- requirements.txt +8 -0
app.py
CHANGED
@@ -1,7 +1,379 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
import gradio as gr
|
3 |
+
import spaces
|
4 |
+
import os
|
5 |
+
import random
|
6 |
|
7 |
+
import subprocess
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
import cv2
|
11 |
+
from huggingface_hub import login
|
12 |
+
from diffusers import FluxControlNetPipeline, FluxControlNetModel
|
13 |
+
from diffusers.models import FluxMultiControlNetModel
|
14 |
|
15 |
+
import warnings
|
16 |
+
from typing import Tuple
|
17 |
+
|
18 |
+
"""
|
19 |
+
FLUX‑1 ControlNet demo
|
20 |
+
----------------------
|
21 |
+
This script rebuilds the Gradio interface shown in your screenshot with **one** control‑image upload
|
22 |
+
slot and integrates the FLUX.1‑dev‑ControlNet‑Union‑Pro model.
|
23 |
+
|
24 |
+
Key points
|
25 |
+
~~~~~~~~~~
|
26 |
+
* Single *control image* input (left).
|
27 |
+
* *Result* and *Pre‑processed Cond* previews side‑by‑side (center & right).
|
28 |
+
* *Prompt* textbox plus a dedicated **ControlNet** panel for choosing the mode and strength.
|
29 |
+
* Seed handling with optional randomisation.
|
30 |
+
* Advanced sliders for *Guidance scale* and *Inference steps*.
|
31 |
+
* Works on CUDA (bfloat16) or CPU (float32).
|
32 |
+
* Minimal Canny preview implementation when the *canny* mode is selected (extend as you like for the
|
33 |
+
other modes).
|
34 |
+
|
35 |
+
Before running, set the `HUGGINGFACE_TOKEN` environment variable **or** call
|
36 |
+
`login("<YOUR_HF_TOKEN>")` explicitly.
|
37 |
+
"""
|
38 |
+
|
39 |
+
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
40 |
+
|
41 |
+
# --------------------------------------------------
|
42 |
+
# Model & pipeline setup
|
43 |
+
# --------------------------------------------------
|
44 |
+
HF_TOKEN = os.getenv("HF_TOKEN_NEW")
|
45 |
+
login(HF_TOKEN)
|
46 |
+
# If you prefer to hard‑code the token, uncomment:
|
47 |
+
# login("hf_your_token_here")
|
48 |
+
|
49 |
+
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
|
50 |
+
CONTROLNET_MODEL = "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro"
|
51 |
+
|
52 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
53 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
54 |
+
|
55 |
+
print(1)
|
56 |
+
controlnet_single = FluxControlNetModel.from_pretrained(
|
57 |
+
CONTROLNET_MODEL, torch_dtype=dtype
|
58 |
+
)
|
59 |
+
print(2)
|
60 |
+
controlnet = FluxMultiControlNetModel([controlnet_single])
|
61 |
+
|
62 |
+
print(3)
|
63 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
64 |
+
BASE_MODEL, controlnet=controlnet, torch_dtype=dtype
|
65 |
+
).to(device)
|
66 |
+
print(4)
|
67 |
+
pipe.set_progress_bar_config(disable=True)
|
68 |
+
print(5)
|
69 |
+
|
70 |
+
# --------------------------------------------------
|
71 |
+
# UI ‑> model value mapping
|
72 |
+
# --------------------------------------------------
|
73 |
+
MODE_MAPPING = {
|
74 |
+
"canny": 0,
|
75 |
+
"tile": 1,
|
76 |
+
"depth": 2,
|
77 |
+
"blur": 3,
|
78 |
+
"pose": 4,
|
79 |
+
"gray": 5,
|
80 |
+
"low quality": 6,
|
81 |
+
}
|
82 |
+
|
83 |
+
MAX_SEED = 100
|
84 |
+
|
85 |
+
# -----------------------------------------------------------------------------
|
86 |
+
# Preview helpers – one small, self‑contained function per mode
|
87 |
+
# -----------------------------------------------------------------------------
|
88 |
+
|
89 |
+
|
90 |
+
def _preview_canny(
|
91 |
+
pil_img: Image.Image, canny_threshold_1: int, canny_threshold_2: int
|
92 |
+
) -> Image.Image:
|
93 |
+
"""Fast Canny‑edge preview (already implemented)."""
|
94 |
+
|
95 |
+
arr = np.array(pil_img.convert("RGB"))
|
96 |
+
edges = cv2.Canny(arr, threshold1=canny_threshold_1, threshold2=canny_threshold_2)
|
97 |
+
edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
|
98 |
+
return Image.fromarray(edges_rgb)
|
99 |
+
|
100 |
+
|
101 |
+
# ――― tile ―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
|
102 |
+
|
103 |
+
|
104 |
+
def _preview_tile(pil_img: Image.Image, grid: Tuple[int, int] = (2, 2)) -> Image.Image:
|
105 |
+
"""Replicates *pil_img* into an *n×m* tiled grid (default 2×2).
|
106 |
+
|
107 |
+
This offers a quick visual hint of what a *tiling* control mode will do
|
108 |
+
(repeatable textures, etc.)."""
|
109 |
+
|
110 |
+
cols, rows = grid
|
111 |
+
img_rgb = pil_img.convert("RGB")
|
112 |
+
w, h = img_rgb.size
|
113 |
+
tiled = Image.new("RGB", (w * cols, h * rows))
|
114 |
+
for c in range(cols):
|
115 |
+
for r in range(rows):
|
116 |
+
tiled.paste(img_rgb, (c * w, r * h))
|
117 |
+
return tiled
|
118 |
+
|
119 |
+
|
120 |
+
# ――― depth ――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
|
121 |
+
|
122 |
+
|
123 |
+
def _preview_depth(pil_img: Image.Image) -> Image.Image:
|
124 |
+
"""Very rough *depth* proxy using the Laplacian and a colormap.
|
125 |
+
|
126 |
+
▸ Convert to gray
|
127 |
+
▸ Run Laplacian to highlight depth‑like gradients
|
128 |
+
▸ Apply a TURBO colormap to mimic depth heat‑map appearance"""
|
129 |
+
|
130 |
+
gray = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2GRAY)
|
131 |
+
lap = cv2.Laplacian(gray, cv2.CV_16S, ksize=3)
|
132 |
+
depth = cv2.convertScaleAbs(lap)
|
133 |
+
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_TURBO)
|
134 |
+
return Image.fromarray(depth_color)
|
135 |
+
|
136 |
+
|
137 |
+
# ――― blur ――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
|
138 |
+
|
139 |
+
|
140 |
+
def _preview_blur(pil_img: Image.Image, ksize: int = 15) -> Image.Image:
|
141 |
+
"""Gaussian blur preview.
|
142 |
+
A single, relatively large kernel is enough for UI illustration."""
|
143 |
+
|
144 |
+
if ksize % 2 == 0:
|
145 |
+
ksize += 1 # kernel must be odd
|
146 |
+
blurred = cv2.GaussianBlur(np.array(pil_img), (ksize, ksize), sigmaX=0)
|
147 |
+
return Image.fromarray(blurred)
|
148 |
+
|
149 |
+
|
150 |
+
# ――― pose ―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
|
151 |
+
|
152 |
+
|
153 |
+
def _preview_pose(pil_img: Image.Image) -> Image.Image:
|
154 |
+
"""Attempt a lightweight 2‑D pose overlay using *mediapipe* if available.
|
155 |
+
|
156 |
+
If *mediapipe* is not installed (or CPU inference fails), we gracefully
|
157 |
+
fallback to an edge‑map preview so the UI never crashes."""
|
158 |
+
|
159 |
+
try:
|
160 |
+
import mediapipe as mp # type: ignore
|
161 |
+
|
162 |
+
mp_pose = mp.solutions.pose
|
163 |
+
mp_drawing = mp.solutions.drawing_utils
|
164 |
+
|
165 |
+
img_bgr = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
166 |
+
with mp_pose.Pose(static_image_mode=True) as pose_estimator:
|
167 |
+
results = pose_estimator.process(
|
168 |
+
img_bgr[..., ::-1]
|
169 |
+
) # Mediapipe expects RGB
|
170 |
+
|
171 |
+
annotated = img_bgr.copy()
|
172 |
+
if results.pose_landmarks:
|
173 |
+
mp_drawing.draw_landmarks(
|
174 |
+
annotated, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
|
175 |
+
)
|
176 |
+
annotated_rgb = cv2.cvtColor(annotated, cv2.COLOR_BGR2RGB)
|
177 |
+
return Image.fromarray(annotated_rgb)
|
178 |
+
|
179 |
+
except Exception as exc: # pragma: no cover – any import / runtime error
|
180 |
+
warnings.warn(
|
181 |
+
f"Pose preview failed ({exc!s}); falling back to Canny.", RuntimeWarning
|
182 |
+
)
|
183 |
+
# Return an edge map as a sensible fallback rather than exploding the UI
|
184 |
+
return _preview_canny(pil_img, 100, 200)
|
185 |
+
|
186 |
+
|
187 |
+
# ――― gray ――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
|
188 |
+
|
189 |
+
|
190 |
+
def _preview_gray(pil_img: Image.Image) -> Image.Image:
|
191 |
+
"""Simple grayscale conversion, but keep a 3‑channel RGB image so the UI
|
192 |
+
widget pipeline stays consistent."""
|
193 |
+
|
194 |
+
gray = cv2.cvtColor(np.array(pil_img.convert("RGB")), cv2.COLOR_RGB2GRAY)
|
195 |
+
gray_rgb = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
|
196 |
+
return Image.fromarray(gray_rgb)
|
197 |
+
|
198 |
+
|
199 |
+
# ――― low quality ――――――――――――――――――――――――――――――――――――――――――――――――――――――――― #
|
200 |
+
|
201 |
+
|
202 |
+
def _preview_low_quality(pil_img: Image.Image, factor: int = 8) -> Image.Image:
|
203 |
+
"""Mimic a low‑quality thumbnail: aggressively downsample then upscale.
|
204 |
+
|
205 |
+
The default *factor* (8×) is chosen to make artefacts obvious."""
|
206 |
+
|
207 |
+
img_rgb = pil_img.convert("RGB")
|
208 |
+
w, h = img_rgb.size
|
209 |
+
small = img_rgb.resize((max(1, w // factor), max(1, h // factor)), Image.BILINEAR)
|
210 |
+
low_q = small.resize(
|
211 |
+
(w, h), Image.NEAREST
|
212 |
+
) # upsample w/ Nearest to exaggerate blocks
|
213 |
+
return low_q
|
214 |
+
|
215 |
+
|
216 |
+
# -----------------------------------------------------------------------------
|
217 |
+
# Master dispatch
|
218 |
+
# -----------------------------------------------------------------------------
|
219 |
+
|
220 |
+
|
221 |
+
def _make_preview(
|
222 |
+
control_image: Image.Image,
|
223 |
+
mode: str,
|
224 |
+
canny_threshold_1: int = 100,
|
225 |
+
canny_threshold_2: int = 200,
|
226 |
+
) -> Image.Image:
|
227 |
+
"""Return a *quick‑n‑dirty* preview image for the requested *mode*.
|
228 |
+
|
229 |
+
Parameters
|
230 |
+
----------
|
231 |
+
control_image : PIL.Image
|
232 |
+
The input image selected by the user.
|
233 |
+
mode : str
|
234 |
+
One of the keys of :data:`MODE_MAPPING`.
|
235 |
+
canny_threshold_1 / 2 : int, optional
|
236 |
+
Only used if *mode* is "canny" (passed straight to OpenCV Canny).
|
237 |
+
"""
|
238 |
+
|
239 |
+
mode = mode.lower()
|
240 |
+
if mode not in MODE_MAPPING:
|
241 |
+
warnings.warn(f"Unknown preview mode '{mode}'. Returning untouched image.")
|
242 |
+
return control_image
|
243 |
+
|
244 |
+
if mode == "canny":
|
245 |
+
return _preview_canny(control_image, canny_threshold_1, canny_threshold_2)
|
246 |
+
if mode == "tile":
|
247 |
+
return _preview_tile(control_image)
|
248 |
+
if mode == "depth":
|
249 |
+
return _preview_depth(control_image)
|
250 |
+
if mode == "blur":
|
251 |
+
return _preview_blur(control_image)
|
252 |
+
if mode == "pose":
|
253 |
+
return _preview_pose(control_image)
|
254 |
+
if mode == "gray":
|
255 |
+
return _preview_gray(control_image)
|
256 |
+
if mode == "low quality":
|
257 |
+
return _preview_low_quality(control_image)
|
258 |
+
|
259 |
+
# Fallback – should never happen due to early mode check
|
260 |
+
return control_image
|
261 |
+
|
262 |
+
|
263 |
+
# --------------------------------------------------
|
264 |
+
# Inference function
|
265 |
+
# --------------------------------------------------
|
266 |
+
|
267 |
+
|
268 |
+
@spaces.GPU
|
269 |
+
def infer(
|
270 |
+
control_image: Image.Image,
|
271 |
+
prompt: str,
|
272 |
+
mode: str,
|
273 |
+
control_strength: float,
|
274 |
+
seed: int,
|
275 |
+
randomize_seed: bool,
|
276 |
+
guidance_scale: float,
|
277 |
+
num_inference_steps: int,
|
278 |
+
canny_threshold_1: int,
|
279 |
+
canny_threshold_2: int,
|
280 |
+
):
|
281 |
+
if control_image is None:
|
282 |
+
raise gr.Error("Please upload a control image first.")
|
283 |
+
|
284 |
+
if randomize_seed:
|
285 |
+
seed = random.randint(0, MAX_SEED)
|
286 |
+
|
287 |
+
gen = torch.Generator(device).manual_seed(seed)
|
288 |
+
w, h = control_image.size
|
289 |
+
|
290 |
+
preprocessed = _make_preview(
|
291 |
+
control_image, mode, canny_threshold_1, canny_threshold_2
|
292 |
+
)
|
293 |
+
|
294 |
+
result = pipe(
|
295 |
+
prompt=prompt,
|
296 |
+
control_image=[preprocessed],
|
297 |
+
control_mode=[MODE_MAPPING[mode]],
|
298 |
+
width=w,
|
299 |
+
height=h,
|
300 |
+
controlnet_conditioning_scale=[control_strength],
|
301 |
+
num_inference_steps=num_inference_steps,
|
302 |
+
guidance_scale=guidance_scale,
|
303 |
+
generator=gen,
|
304 |
+
).images[0]
|
305 |
+
|
306 |
+
return result, seed, preprocessed
|
307 |
+
|
308 |
+
|
309 |
+
# --------------------------------------------------
|
310 |
+
# Gradio UI
|
311 |
+
# --------------------------------------------------
|
312 |
+
css = """#wrapper {max-width: 960px; margin: 0 auto;}"""
|
313 |
+
with gr.Blocks(css=css, elem_id="wrapper") as demo:
|
314 |
+
gr.Markdown("## FLUX.1‑dev‑ControlNet‑Union‑Pro by Frank")
|
315 |
+
gr.Markdown(
|
316 |
+
"A unified ControlNet for **FLUX.1‑dev** from the InstantX team and Shakker Labs. "
|
317 |
+
+ "Recommended strengths: *canny 0.76*. Long prompts usually help."
|
318 |
+
)
|
319 |
+
|
320 |
+
# ------------ Image panel row ------------
|
321 |
+
with gr.Row():
|
322 |
+
control_image = gr.Image(
|
323 |
+
label="Upload animage",
|
324 |
+
type="pil",
|
325 |
+
height=512 + 256,
|
326 |
+
)
|
327 |
+
result_image = gr.Image(label="Result", height=512 + 256)
|
328 |
+
preview_image = gr.Image(label="Pre‑processed Cond", height=512 + 256)
|
329 |
+
|
330 |
+
# ------------ Prompt ------------
|
331 |
+
prompt_txt = gr.Textbox(label="Prompt", value="White background", lines=1)
|
332 |
+
|
333 |
+
# ------------ ControlNet settings ------------
|
334 |
+
with gr.Row():
|
335 |
+
with gr.Column():
|
336 |
+
gr.Markdown("### ControlNet")
|
337 |
+
mode_radio = gr.Radio(
|
338 |
+
choices=list(MODE_MAPPING.keys()), value="canny", label="Mode"
|
339 |
+
)
|
340 |
+
strength_slider = gr.Slider(
|
341 |
+
0.0, 1.0, value=0.76, step=0.01, label="control strength"
|
342 |
+
)
|
343 |
+
gr.Markdown("### Preprocess")
|
344 |
+
canny_threshold_1 = gr.Slider(
|
345 |
+
0, 500, step=1, value=100, label="Canny threshold 1"
|
346 |
+
)
|
347 |
+
canny_threshold_2 = gr.Slider(
|
348 |
+
0, 500, step=1, value=200, label="Canny threshold 2"
|
349 |
+
)
|
350 |
+
|
351 |
+
with gr.Column():
|
352 |
+
seed_slider = gr.Slider(0, MAX_SEED, step=1, value=42, label="Seed")
|
353 |
+
randomize_chk = gr.Checkbox(label="Randomize seed", value=False)
|
354 |
+
guidance_slider = gr.Slider(
|
355 |
+
0.0, 10.0, step=0.1, value=3.5, label="Guidance scale"
|
356 |
+
)
|
357 |
+
steps_slider = gr.Slider(1, 50, step=1, value=50, label="Inference steps")
|
358 |
+
|
359 |
+
submit_btn = gr.Button("Submit")
|
360 |
+
|
361 |
+
submit_btn.click(
|
362 |
+
fn=infer,
|
363 |
+
inputs=[
|
364 |
+
control_image,
|
365 |
+
prompt_txt,
|
366 |
+
mode_radio,
|
367 |
+
strength_slider,
|
368 |
+
seed_slider,
|
369 |
+
randomize_chk,
|
370 |
+
guidance_slider,
|
371 |
+
steps_slider,
|
372 |
+
canny_threshold_1,
|
373 |
+
canny_threshold_2,
|
374 |
+
],
|
375 |
+
outputs=[result_image, seed_slider, preview_image],
|
376 |
+
)
|
377 |
+
|
378 |
+
if __name__ == "__main__":
|
379 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
diffusers
|
3 |
+
invisible_watermark
|
4 |
+
torch
|
5 |
+
transformers
|
6 |
+
xformers
|
7 |
+
sentencepiece==0.2.0
|
8 |
+
opencv-python
|