File size: 9,994 Bytes
1bf7168 15d32ba 5889e5d 15d32ba 5889e5d 15d32ba 08d1d51 5889e5d 08d1d51 5889e5d a878ad7 15d32ba e844849 15d32ba e844849 15d32ba 5889e5d 15d32ba b10c582 15d32ba b10c582 15d32ba 23dc432 15d32ba feb219b 08d1d51 15d32ba 5889e5d 08d1d51 15d32ba 08d1d51 15d32ba 08d1d51 3f8bcd2 5889e5d d8e5c00 5889e5d 15d32ba 23dc432 02e4fca 5889e5d 08d1d51 5889e5d 08d1d51 5889e5d 08d1d51 5889e5d 08d1d51 23dc432 08d1d51 6b29f7a 5889e5d 08d1d51 5889e5d 15d32ba 5889e5d 08d1d51 15d32ba 5889e5d 23dc432 15d32ba e844849 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
import re
import uuid
# Load model and tokenizer
phi4_model_path = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
def format_math(text):
text = re.sub(r"\[(.*?)\]", r"$$\1$$", text, flags=re.DOTALL)
text = text.replace(r"\(", "$").replace(r"\)", "$")
return text
# Global dictionary to store all conversations: {id: {"title": str, "messages": list}}
conversations = {}
def generate_conversation_id():
return str(uuid.uuid4())[:8]
@spaces.GPU(duration=60)
def generate_response(user_message, max_tokens, temperature, top_p, history_state):
if not user_message.strip():
return history_state, history_state
model = phi4_model
tokenizer = phi4_tokenizer
start_tag = "<|im_start|>"
sep_tag = "<|im_sep|>"
end_tag = "<|im_end|>"
system_message = "Your role as an assistant..."
prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
for message in history_state:
if message["role"] == "user":
prompt += f"{start_tag}user{sep_tag}{message['content']}{end_tag}"
elif message["role"] == "assistant" and message["content"]:
prompt += f"{start_tag}assistant{sep_tag}{message['content']}{end_tag}"
prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": int(max_tokens),
"do_sample": True,
"temperature": temperature,
"top_k": 50,
"top_p": top_p,
"repetition_penalty": 1.0,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
}
try:
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
except Exception:
yield history_state + [{"role": "user", "content": user_message}, {"role": "assistant", "content": "⚠️ Generation failed."}], history_state
return
assistant_response = ""
new_history = history_state + [
{"role": "user", "content": user_message},
{"role": "assistant", "content": ""}
]
'''
try:
for new_token in streamer:
if "<|end" in new_token:
continue
cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "")
assistant_response += cleaned_token
new_history[-1]["content"] = assistant_response.strip()
yield new_history, new_history
except Exception:
pass
yield new_history, new_history'''
try:
for new_token in streamer:
if "<|end" in new_token:
continue
cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "")
assistant_response += cleaned_token
new_history[-1]["content"] = assistant_response.strip()
yield new_history, new_history
except Exception:
new_history[-1]["content"] += "\n⚠️ Incomplete response due to generation limit or stream error."
yield new_history, new_history
return
# Final yield to clean up in case of clean stop
new_history[-1]["content"] = assistant_response.strip()
yield new_history, new_history
example_messages = {
"JEE Main 2025 Combinatorics": "From all the English alphabets, five letters are chosen and are arranged in alphabetical order. The total number of ways, in which the middle letter is 'M', is?",
"JEE Main 2025 Coordinate Geometry": "A circle \\(C\\) of radius 2 lies in the second quadrant and touches both the coordinate axes. Let \\(r\\) be the radius of a circle that has centre at the point \\((2, 5)\\) and intersects the circle \\(C\\) at exactly two points. If the set of all possible values of \\(r\\) is the interval \\((\\alpha, \\beta)\\), then \\(3\\beta - 2\\alpha\\) is?",
"JEE Main 2025 Probability & Statistics": "A coin is tossed three times. Let \(X\) denote the number of times a tail follows a head. If \\(\\mu\\) and \\(\\sigma^2\\) denote the mean and variance of \\(X\\), then the value of \\(64(\\mu + \\sigma^2)\\) is?",
"JEE Main 2025 Laws of Motion": "A massless spring gets elongated by amount x_1 under a tension of 5 N . Its elongation is x_2 under the tension of 7 N . For the elongation of 5x_1 - 2x_2 , the tension in the spring will be?"
}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Ramanujan Ganit R1 14B V1 Chatbot
Welcome to the Ramanujan Ganit R1 14B V1 Chatbot, developed by Fractal AI Research!
Our model excels at reasoning tasks in mathematics and science.
Try the example problems below from JEE Main 2025 or type in your own problems to see how our model breaks down complex reasoning problems.
"""
)
with gr.Sidebar():
gr.Markdown("## Conversations")
conversation_selector = gr.Radio(choices=[], label="Select Conversation", interactive=True)
new_convo_button = gr.Button("New Conversation")
current_convo_id = gr.State(generate_conversation_id())
history_state = gr.State([])
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Settings")
max_tokens_slider = gr.Slider(minimum=6144, maximum=32768, step=1024, value=16384, label="Max Tokens")
with gr.Accordion("Advanced Settings", open=False):
temperature_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.6, label="Temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
with gr.Column(scale=4):
chatbot = gr.Chatbot(label="Chat", type="messages")
with gr.Row():
user_input = gr.Textbox(label="User Input", placeholder="Type your question here...", scale=8)
with gr.Column():
submit_button = gr.Button("Send", variant="primary", scale=1)
clear_button = gr.Button("Clear", scale=1)
gr.Markdown("**Try these examples:**")
with gr.Row():
example1_button = gr.Button("JEE Main 2025\nCombinatorics")
example2_button = gr.Button("JEE Main 2025\nCoordinate Geometry")
example3_button = gr.Button("JEE Main 2025\nProbability & Statistics")
example4_button = gr.Button("JEE Main 2025\nLaws of Motion")
def update_conversation_list():
return [conversations[cid]["title"] for cid in conversations]
def start_new_conversation():
new_id = generate_conversation_id()
conversations[new_id] = {"title": f"New Conversation {new_id}", "messages": []}
return new_id, [], gr.update(choices=update_conversation_list(), value=conversations[new_id]["title"])
def load_conversation(selected_title):
for cid, convo in conversations.items():
if convo["title"] == selected_title:
return cid, convo["messages"], convo["messages"]
return current_convo_id.value, history_state.value, history_state.value
def send_message(user_message, max_tokens, temperature, top_p, convo_id, history):
if convo_id not in conversations:
#title = user_message.strip().split("\n")[0][:40]
title = " ".join(user_message.strip().split()[:5])
conversations[convo_id] = {"title": title, "messages": history}
if conversations[convo_id]["title"].startswith("New Conversation"):
#conversations[convo_id]["title"] = user_message.strip().split("\n")[0][:40]
conversations[convo_id]["title"] = " ".join(user_message.strip().split()[:5])
for updated_history, new_history in generate_response(user_message, max_tokens, temperature, top_p, history):
conversations[convo_id]["messages"] = new_history
yield updated_history, new_history, gr.update(choices=update_conversation_list(), value=conversations[convo_id]["title"])
submit_button.click(
fn=send_message,
inputs=[user_input, max_tokens_slider, temperature_slider, top_p_slider, current_convo_id, history_state],
outputs=[chatbot, history_state, conversation_selector]
).then(
fn=lambda: gr.update(value=""),
inputs=None,
outputs=user_input
)
clear_button.click(
fn=lambda: ([], []),
inputs=None,
outputs=[chatbot, history_state]
)
new_convo_button.click(
fn=start_new_conversation,
inputs=None,
outputs=[current_convo_id, history_state, conversation_selector]
)
conversation_selector.change(
fn=load_conversation,
inputs=conversation_selector,
outputs=[current_convo_id, history_state, chatbot]
)
example1_button.click(fn=lambda: gr.update(value=example_messages["JEE Main 2025 Combinatorics"]), inputs=None, outputs=user_input)
example2_button.click(fn=lambda: gr.update(value=example_messages["JEE Main 2025 Coordinate Geometry"]), inputs=None, outputs=user_input)
example3_button.click(fn=lambda: gr.update(value=example_messages["JEE Main 2025 Probability & Statistics"]), inputs=None, outputs=user_input)
example4_button.click(fn=lambda: gr.update(value=example_messages["JEE Main 2025 Laws of Motion"]), inputs=None, outputs=user_input)
demo.launch(share=True, ssr_mode=False)
|