Spaces:
Running
Running
File size: 4,170 Bytes
355d903 185fc75 70399da 43f2732 70399da 43f2732 687c689 43f2732 3abac7b 43f2732 70399da 43f2732 70399da 401875a 43f2732 7d147e2 43f2732 70399da 43f2732 70399da 987fd27 70399da 2c6febe c741ce2 70399da 185fc75 70399da 43f2732 185fc75 2703cea 70399da f828b7a 987fd27 70399da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import torch
torch.manual_seed(160923)
import gradio as gr
import torch.cuda
from huggingface_hub import hf_hub_download
from InferenceInterfaces.ControllableInterface import ControllableInterface
from Utility.utils import float2pcm
from Utility.utils import load_json_from_path
class TTSWebUI:
def __init__(self,
gpu_id="cpu",
title="Phoneme Synthesis with Neutral Accent and Many Speakers",
article="Put in a string of IPA characters and have it pronounced in a way that is averaged across many languages. Use ~ to get a pause and include any punctuation marks you would normally use. If you enable the checkbox, the model will take much longer, but the result will be spoken by 10 artificial voices at the same time. <br>",
tts_model_path=None,
vocoder_model_path=None,
embedding_gan_path=None,
available_artificial_voices=10 # be careful with this, if you want too many, it might lead to an endless loop
):
path_to_iso_list = hf_hub_download(repo_id="Flux9665/ToucanTTS", filename="iso_to_fullname.json")
iso_to_name = load_json_from_path(path_to_iso_list)
text_selection = [f"{iso_to_name[iso_code]} ({iso_code})" for iso_code in iso_to_name]
# accent_selection = [f"{iso_to_name[iso_code]} Accent ({iso_code})" for iso_code in iso_to_name]
self.controllable_ui = ControllableInterface(gpu_id=gpu_id,
available_artificial_voices=available_artificial_voices,
tts_model_path=tts_model_path,
vocoder_model_path=vocoder_model_path,
embedding_gan_path=embedding_gan_path)
self.iface = gr.Interface(fn=self.read,
inputs=[gr.Textbox(lines=2,
placeholder="put in IPA symbols here...",
value="~tə ɡɛt ɐ pˈɔːz~ plˈeɪs ɐ tˈɪldə sˈɪmbəl. jˈuːs pʌŋktʃuːˈeɪʃən~ æz ɪf ðɪs wʌz tˈɛkst.~#",
label="IPA Input"),
gr.Slider(minimum=0.0, maximum=0.8, step=0.1, value=0.5, label="Prosody Creativity"),
gr.Checkbox(value=False, label="Speak in many Voices"),
gr.Audio(type="filepath", show_label=True, container=True, label="[OPTIONAL] Voice to Clone (if left empty, will use an artificial voice instead)"),
# gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Pitch Variance Scale"),
# gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Energy Variance Scale"),
# gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Voice Depth")
],
outputs=[gr.Audio(type="numpy", label="Speech")],
title=title,
allow_flagging="never",
description=article,
theme=gr.themes.Ocean(primary_hue="amber", secondary_hue="orange"))
self.iface.launch()
def read(self,
prompt,
prosody_creativity,
voice_seed,
reference_audio,
):
sr, wav = self.controllable_ui.read("~" + prompt.replace(",", "~") + "~#",
reference_audio,
voice_seed,
prosody_creativity,
-24.)
return (sr, float2pcm(wav))
if __name__ == '__main__':
TTSWebUI(gpu_id="cuda" if torch.cuda.is_available() else "cpu")
|