Final_Assignment_Template / gaia_agent.py
FergusFindley's picture
Update gaia_agent.py
8bc446e verified
raw
history blame
6.3 kB
# from langchain_ollama import ChatOllama
from langchain_core.messages import SystemMessage, HumanMessage
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.tools import tool
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from math import sqrt
### =============== MATHEMATICAL TOOLS =============== ###
@tool
def multiply(a: float, b: float) -> float:
"""
Multiplies two numbers.
Args:
a (float): the first number
b (float): the second number
"""
return a * b
@tool
def add(a: float, b: float) -> float:
"""
Adds two numbers.
Args:
a (float): the first number
b (float): the second number
"""
return a + b
@tool
def subtract(a: float, b: float) -> int:
"""
Subtracts two numbers.
Args:
a (float): the first number
b (float): the second number
"""
return a - b
@tool
def divide(a: float, b: float) -> float:
"""
Divides two numbers.
Args:
a (float): the first float number
b (float): the second float number
"""
if b == 0:
raise ValueError("Cannot divided by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""
Get the modulus of two numbers.
Args:
a (int): the first number
b (int): the second number
"""
return a % b
@tool
def power(a: float, b: float) -> float:
"""
Get the power of two numbers.
Args:
a (float): the first number
b (float): the second number
"""
return a**b
@tool
def square_root(a: float) -> float | complex:
"""
Get the square root of a number.
Args:
a (float): the number to get the square root of
"""
if a >= 0:
return a**0.5
return sqrt(a)
### =============== BROWSER TOOLS =============== ###
search_tool = DuckDuckGoSearchRun()
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
print(f"I'm running web_search with {query = }")
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
]
)
return {"web_results": formatted_search_docs}
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
]
)
return {"arxiv_results": formatted_search_docs}
tools = [multiply, add, subtract, divide, modulus, power, square_root, web_search, arxiv_search, wiki_search]
GAIA_SYSTEM_PROMPT = """
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
"""
sys_msg = SystemMessage(content=GAIA_SYSTEM_PROMPT)
# Build graph function
def build_graph(provider: str = "huggingface"):
"""Build the graph"""
# Load environment variables from .env file
# if provider == "ollama":
# chat = ChatOllama(model="llama3.1")
if provider == "huggingface":
llm = HuggingFaceEndpoint(
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct"
)
chat = ChatHuggingFace(llm=llm, verbose=True)
else:
raise ValueError("Invalid provider. Choose 'ollama' or 'huggingface'.")
# Bind tools to LLM
chat_with_tools = chat.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
print([sys_msg] + state["messages"])
return {"messages": [chat_with_tools.invoke([sys_msg] + state["messages"])]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
return builder.compile()
# test
if __name__ == "__main__":
question = "Examine the video at https://www.youtube.com/watch?v=1htKBjuUWec.\n\nWhat does Teal'c say in response to the question \"Isn't that hot?\""
# fixed_answer = "extremely"
graph = build_graph(provider="huggingface")
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()