""" DeepFunding Oracle: This script dynamically loads dependency data and for each repository URL: • Fetches GitHub features (stars, forks, watchers, open issues, pull requests, activity) using the GitHub API. • Uses the LLama model to analyze parent-child behavior (based on the fetched features and parent info) and returns a base weight (0-1) for the repository. • Trains a RandomForest regressor on these features (with the base weight as the target) to predict a final weight. The output submission CSV has three columns: repo, parent, and final_weight. """ from io import StringIO import os import warnings import csv import re import requests import numpy as np import pandas as pd import time import threading import logging import concurrent.futures from concurrent.futures import ThreadPoolExecutor import signal from tqdm import tqdm import sys import re from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from Oracle.SmolLM import SmolLM warnings.filterwarnings("ignore") # Configure logging to file and console logging.basicConfig( handlers=[ logging.FileHandler("deepfundingoracle.log"), logging.StreamHandler(sys.stdout) ], level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) ############################## # Enhanced GitHub API helper: Fetch repository metrics ############################## def fetch_repo_metrics(repo_url): """ Fetch GitHub metrics (stars, forks, watchers, open issues, pull requests, and activity) given a repository URL. Assumes repo_url is in the form "https://github.com/owner/repo". """ try: # Extract owner and repo name m = re.search(r"github\.com/([^/]+)/([^/]+)", repo_url) if not m: return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0} owner, repo_name = m.group(1), m.group(2) api_url = f"https://api.github.com/repos/{owner}/{repo_name}" headers = {} token = os.environ.get("GITHUB_API_TOKEN", "") if token: headers["Authorization"] = f"token {token}" r = requests.get(api_url, headers=headers) if r.status_code == 200: data = r.json() pulls_url = data.get("pulls_url", "").replace("{\/*state}", "") pulls_count = len(requests.get(pulls_url, headers=headers).json()) if pulls_url else 0 activity = data.get("updated_at", "") return { "stargazers_count": data.get("stargazers_count", 0), "forks_count": data.get("forks_count", 0), "watchers_count": data.get("watchers_count", 0), "open_issues_count": data.get("open_issues_count", 0), "pulls_count": pulls_count, "activity": activity, "owner": owner, "repo_name": repo_name, "token": token } else: return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0} except Exception: return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0} ############################## # Enhanced Feature Extraction ############################## def load_data(file): """ Dynamically load the dependency data CSV from the uploaded file. Expects at least "repo" and "parent" columns. """ try: print("[INFO] Loading data from uploaded file...") start_time = time.time() # Read the uploaded file directly into a DataFrame df = pd.read_csv(file) end_time = time.time() print(f"[INFO] Data loaded successfully in {end_time - start_time:.2f} seconds.") return df except Exception as e: print("[ERROR] Error loading data:", e) return None def fetch_github_features(df): """ For each row, using the repo URL, call the GitHub API to fetch: stars, forks, watchers, open issues, pull requests, activity, and contributors count. Adds these as new columns to the DataFrame. """ print("[INFO] Fetching GitHub features for repositories...") start_time = time.time() stars_list = [] forks_list = [] watchers_list = [] issues_list = [] pulls_list = [] activity_list = [] contributors_list = [] cache = {} def get_metrics(repo_url): if repo_url in cache: return cache[repo_url] val = fetch_repo_metrics(repo_url) cache[repo_url] = val return val with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor: futures = {executor.submit(get_metrics, row['repo']): i for i, row in df.iterrows()} for fut in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Fetching metrics"): res = fut.result() stars_list.append(res["stargazers_count"]) forks_list.append(res["forks_count"]) watchers_list.append(res["watchers_count"]) issues_list.append(res["open_issues_count"]) pulls_list.append(res["pulls_count"]) activity_list.append(res["activity"]) # Fetch contributors count try: contributors_url = f"https://api.github.com/repos/{res['owner']}/{res['repo_name']}/contributors" headers = {"Authorization": f"token {res['token']}"} contributors_response = requests.get(contributors_url, headers=headers) if contributors_response.status_code == 200: contributors_list.append(len(contributors_response.json())) else: contributors_list.append(0) except Exception: contributors_list.append(0) df["stars"] = stars_list df["forks"] = forks_list df["watchers"] = watchers_list df["open_issues"] = issues_list df["pulls"] = pulls_list df["activity"] = activity_list df["contributors"] = contributors_list end_time = time.time() print(f"[INFO] GitHub features fetched successfully in {end_time - start_time:.2f} seconds.") return df def timeout_handler(signum, frame): raise TimeoutError("LLama model prediction timed out.") def assign_base_weight(df, max_workers=8): """ Assign base weights using LLama model in parallel. """ print("[INFO] Starting base weight assignment using LLama model...", flush=True) logging.info("[INFO] Assigning base weights using LLama model...") start_time = time.time() llama = SmolLM() base_weights = [] llm_cache = {} # Prepare prompts for all repositories prompts = {} for idx, row in df.iterrows(): repo = row.get("repo", "") parent = row.get("parent", "") stars = row.get("stars", 0) forks = row.get("forks", 0) watchers = row.get("watchers", 0) issues = row.get("open_issues", 0) pulls = row.get("pulls", 0) activity = row.get("activity", "") prompts[idx] = ( f"Repository: {repo}\n" f"GitHub Metrics: {stars} stars, {forks} forks, {watchers} watchers, {issues} open issues, {pulls} pull requests, activity: {activity}.\n" f"Parent or dependency: {parent}\n\n" "Based on these features, assign a dependency weight between 0 and 1 for the repository " "that reflects how influential the repository is as a source relative to its parent. " "Only output the numeric value." ) # Define the prediction function def _predict(idx, prompt): if idx in llm_cache: return idx, llm_cache[idx] try: resp = llama.predict(prompt) match = re.search(r"[-+]?\d*\.\d+|\d+", resp) weight = min(max(float(match.group()), 0), 1) if match else 0.0 llm_cache[idx] = weight return idx, weight except Exception as e: print(f"[ERROR] Failed to process repository {idx}: {e}", flush=True) logging.error(f"[ERROR] Failed to process repository {idx}: {e}") return idx, 0.0 # Default weight in case of failure # Run predictions in parallel with ThreadPoolExecutor(max_workers=max_workers) as executor: futures = [executor.submit(_predict, idx, prompt) for idx, prompt in prompts.items()] for fut in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="LLM Prompts"): idx, weight = fut.result() base_weights.append((idx, weight)) # Sort weights by index and assign to DataFrame base_weights.sort(key=lambda x: x[0]) df["base_weight"] = [weight for _, weight in base_weights] end_time = time.time() print(f"[INFO] Base weights assigned successfully in {end_time - start_time:.2f} seconds.", flush=True) logging.info(f"[INFO] Base weights assigned successfully in {end_time - start_time:.2f} seconds.") return df def prepare_dataset(file): print("[INFO] Starting dataset preparation...") start_time = time.time() df = load_data(file) if df is None: raise ValueError("Failed to load data.") if not {"repo", "parent"}.issubset(df.columns): raise ValueError("Input CSV must contain 'repo' and 'parent' columns.") print("[INFO] Fetching GitHub features...") df = fetch_github_features(df) print("[INFO] GitHub features fetched successfully.") print("[INFO] Assigning base weights using LLama model...") df = assign_base_weight(df) end_time = time.time() print(f"[INFO] Dataset preparation completed in {end_time - start_time:.2f} seconds.") return df ############################## # Enhanced RandomForest Regression ############################## def train_predict_weight(df): print("[INFO] Starting weight prediction...", flush=True) start_time = time.time() target = "base_weight" if "activity" in df.columns: # Parse ISO timestamps as UTC and subtract with a UTC timestamp df["activity"] = pd.to_datetime(df["activity"], errors="coerce", utc=True) now = pd.Timestamp.now(tz="UTC") df["activity"] = (now - df["activity"]).dt.days.fillna(-1) feature_cols = ["stars", "forks", "watchers", "open_issues", "pulls", "activity", "contributors"] if target not in df.columns: raise ValueError("Base weight column missing.") X = df[feature_cols] y = df[target] print("[INFO] Splitting data into training and testing sets...", flush=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) rf_model = RandomForestRegressor(random_state=42, max_depth=None) param_dist = { "n_estimators": [100, 200, 300], "min_samples_split": [2, 5, 10], "min_samples_leaf": [1, 2, 4] } print("[INFO] Performing randomized search for hyperparameter tuning...", flush=True) rand_search = RandomizedSearchCV( estimator=rf_model, param_distributions=param_dist, n_iter=20, cv=3, scoring="neg_mean_squared_error", random_state=42, error_score="raise" ) rand_search.fit(X_train, y_train) print("[INFO] Randomized search completed.", flush=True) print("Best Parameters:", rand_search.best_params_, flush=True) print("Best MSE:", -rand_search.best_score_, flush=True) y_pred = rand_search.best_estimator_.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("Final RF Test MSE:", mse, flush=True) print("[INFO] Predicting final weights for all rows...") df["final_weight_raw"] = rand_search.best_estimator_.predict(X) # Normalize weights per parent for meaningful spread df["final_weight"] = df.groupby("parent")["final_weight_raw"].transform( lambda s: (s - s.min()) / (s.max() - s.min() if s.max() != s.min() else 1) ) end_time = time.time() print(f"[INFO] Weight prediction completed in {end_time - start_time:.2f} seconds.", flush=True) return df ############################## # CSV Output ############################## def create_submission_csv(df, output_filename="submission.csv"): print(f"[INFO] Writing results to {output_filename}...", flush=True) required_cols = ["repo", "parent", "final_weight"] submission_df = df[required_cols] submission_df.to_csv(output_filename, index=False) print(f"[INFO] Results written to {output_filename}.", flush=True) return output_filename # Removed Gradio UI code from this file to ensure modular workflow. # This file now focuses solely on data processing and prediction. if __name__ == "__main__": print("DeepFunding Oracle is now ready for backend processing.", flush=True)