import os import gradio as gr from Oracle.deepfundingoracle import prepare_dataset, train_predict_weight, create_submission_csv import pandas as pd import matplotlib.pyplot as plt import time import io from PIL import Image def analyze_file(file, progress=gr.Progress(track_tqdm=True)): start_time = time.time() progress(0, desc="Preparing dataset...") df = prepare_dataset(file.name) progress(0.3, desc="Predicting weights...") df = train_predict_weight(df) progress(0.6, desc="Saving results to CSV...") csv_path = create_submission_csv(df, "submission.csv") progress(0.8, desc="Generating graph...") # Example: plot histogram of a column if exists fig, ax = plt.subplots() if 'final_weight' in df.columns: df['final_weight'].hist(ax=ax) ax.set_title('Distribution of Final Weights') ax.set_xlabel('Final Weight') ax.set_ylabel('Count') else: ax.text(0.5, 0.5, 'No final_weight column to plot', ha='center') buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) plt.close(fig) img = Image.open(buf) progress(1, desc="Done!") elapsed = time.time() - start_time preview = df.head().to_csv(index=False) return preview, csv_path, img, f"Analysis completed in {elapsed:.2f} seconds." iface = gr.Interface( fn=analyze_file, inputs=gr.File(label="Upload CSV"), outputs=[ gr.Textbox(label="Preview of Results"), gr.File(label="Download CSV"), gr.Image(label="Analysis Graph"), gr.Textbox(label="Status/Timing Info") ], title="DeepFunding Oracle", description="Upload a CSV of repo-parent relationships; see analysis progress, get a graph, and download results as CSV.", allow_flagging="never" ) if __name__ == "__main__": port = int(os.environ.get("PORT", 7860)) iface.launch(server_name="0.0.0.0", server_port=port)