""" DeepFunding Oracle: This script dynamically loads dependency data and for each repository URL: • Fetches GitHub features (stars, forks, watchers, open issues, pull requests, activity) using the GitHub API. • Uses the LLama model to analyze parent-child behavior (based on the fetched features and parent info) and returns a base weight (0-1) for the repository. • Trains a RandomForest regressor on these features (with the base weight as the target) to predict a final weight. The output submission CSV has three columns: repo, parent, and final_weight. """ import base64 from io import StringIO import os import warnings import csv import re import requests import numpy as np import pandas as pd import time import threading import logging import concurrent.futures from concurrent.futures import ThreadPoolExecutor import signal from tqdm import tqdm import sys import re import json import time from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import seaborn as sns from Oracle.SmolLM import SmolLM warnings.filterwarnings("ignore") # Configure logging to file and console logging.basicConfig( handlers=[ logging.FileHandler("deepfundingoracle.log"), logging.StreamHandler(sys.stdout) ], level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) ############################## # GitHub API helper: Fetch repository metrics ############################## def fetch_repo_metrics(repo_url): """ Fetch GitHub metrics (stars, forks, watchers, open issues, pull requests, and activity) given a repository URL. """ try: # Extract owner and repo name m = re.search(r"github\.com/([^/]+)/([^/]+)", repo_url) if not m: return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0} owner, repo_name = m.group(1), m.group(2) api_url = f"https://api.github.com/repos/{owner}/{repo_name}" headers = {} token = os.environ.get("GITHUB_API_TOKEN", "") if token: headers["Authorization"] = f"token {token}" r = requests.get(api_url, headers=headers) if r.status_code == 200: data = r.json() # Log fetched data for debugging print(f"[DEBUG] Fetched data for {repo_url}: {data}") pulls_url = data.get("pulls_url", "").replace("{/state}", "") pulls_count = len(requests.get(pulls_url, headers=headers).json()) if pulls_url else 0 activity = data.get("updated_at", "") return { "stargazers_count": data.get("stargazers_count", 0), "forks_count": data.get("forks_count", 0), "watchers_count": data.get("watchers_count", 0), "open_issues_count": data.get("open_issues_count", 0), "pulls_count": pulls_count, "activity": activity, "owner": owner, "repo_name": repo_name, "token": token } else: print(f"[ERROR] Failed to fetch data for {repo_url}: {r.status_code}") return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0} except Exception as e: print(f"[ERROR] Exception while fetching data for {repo_url}: {e}") return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0} ############################## # Feature Extraction ############################## def load_data(file): """ Dynamically load the dependency data CSV from the uploaded file. Expects at least "repo" and "parent" columns. """ try: print("[INFO] Loading data from uploaded file...") start_time = time.time() # Read the uploaded file directly into a DataFrame df = pd.read_csv(file) end_time = time.time() print(f"[INFO] Data loaded successfully in {end_time - start_time:.2f} seconds.") return df except Exception as e: print("[ERROR] Error loading data:", e) return None def fetch_github_features(df): """ For each row, using the repo URL, call the GitHub API to fetch: stars, forks, watchers, open issues, pull requests, activity, and contributors count. Adds these as new columns to the DataFrame. """ print("[INFO] Fetching GitHub features for repositories...") start_time = time.time() stars_list = [] forks_list = [] watchers_list = [] issues_list = [] pulls_list = [] activity_list = [] contributors_list = [] dependencies_list =[] cache = {} def get_metrics(repo_url): if repo_url in cache: print(f"[DEBUG] Cached data for {repo_url}: {cache[repo_url]}") return cache[repo_url] val = fetch_repo_metrics(repo_url) print(f"[DEBUG] Extracted GitHub data for {repo_url}: {val}") # <-- Add this line try: m = re.search(r"github\.com/([^/]+)/([^/]+)",repo_url) if m: owner, repo_name = m.group(1), m.group(2) pkg_url = f"https://api.github.com/repos/{owner}/{repo_name}/packages.json" headers = {} token = os.environ.get("GITHUB_API_TOKEN", "") if token: headers["Authorization"] = f"token {token}" pkg_resp = requests.get(pkg_url, headers=headers) if pkg_resp.status_code ==200: pkg_data = pkg_resp.json() content = base64.b64decode(pkg_data["content",""]).decode("utf-8") pkg_json = json.loads(content) dependencies = pkg_json.get("dependencies", {}) val["dependencies_count"] = len(dependencies) else: val["dependencies_count"] = 0 else: val["dependencies_count"] = 0 except Exception: val["dependencies_count"] = 0 cache[repo_url] = val return val with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor: futures = {executor.submit(get_metrics, row['repo']): i for i, row in df.iterrows()} for fut in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Fetching metrics"): res = fut.result() stars_list.append(res.get("stargazers_count", 0)) forks_list.append(res.get("forks_count", 0)) watchers_list.append(res.get("watchers_count", 0)) issues_list.append(res.get("open_issues_count", 0)) pulls_list.append(res.get("pulls_count", 0)) activity_list.append(res.get("activity", 0)) dependencies_list.append(res.get("dependencies_count", 0)) # Fetch contributors count try: contributors_url = f"https://api.github.com/repos/{res['owner']}/{res['repo_name']}/contributors" headers = {"Authorization": f"token {res['token']}"} contributors_response = requests.get(contributors_url, headers=headers) if contributors_response.status_code == 200: contributors_list.append(len(contributors_response.json())) else: contributors_list.append(0) except Exception: contributors_list.append(0) df["stars"] = stars_list df["forks"] = forks_list df["watchers"] = watchers_list df["open_issues"] = issues_list df["pulls"] = pulls_list df["activity"] = activity_list df["contributors"] = contributors_list df["dependencies_count"] = dependencies_list end_time = time.time() print(f"[INFO] GitHub features fetched successfully in {end_time - start_time:.2f} seconds.") return df def timeout_handler(signum, frame): raise TimeoutError("LLama model prediction timed out.") def assign_base_weight(df, max_workers=32, llm_retries=2, llm_delay=0): """ Assign base weights using a single LLM call to determine feature weights, and programmatically calculate repository weights. """ print("[INFO] Starting optimized base weight assignment...", flush=True) logging.info("[INFO] Assigning base weights using optimized approach...") start_time = time.time() oracle = SmolLM() prompt = ( "Can you Predict a weight in the range (0-1) for these GitHub features such as stars, forks, watchers, " "open_issues, pulls, activity, contributors based on their importance in determining the influence of a repository? " "Output the weights for each feature as text e.g.: " 'stars: 0.3, forks: 0.2, watchers: 0.2, open_issues: 0.1, pulls: 0.1, activity: 0.05, contributors: 0.05' ) feature_weights = None for attempt in range(llm_retries): try: response = oracle.predict(prompt, max_length=512, max_new_tokens=150) if not response or not response.strip(): raise ValueError("Empty response from Oracle.") matches = re.findall( r'(stars|forks|watchers|open_issues|pulls|activity|contributors)\s*[:=]\s*([0-9]*\.?[0-9]+)', response, re.IGNORECASE) feature_weights = {k.lower(): float(v) for k, v in matches} if not feature_weights or len(feature_weights) < 7: raise ValueError("Could not extract all feature weights from response.") print(f"[INFO] Feature weights from LLM: {feature_weights}", flush=True) break except Exception as e: print(f"[ERROR] Oracle attempt {attempt+1} failed: {e}", flush=True) logging.error(f"[ERROR] Oracle attempt {attempt+1} failed: {e}") time.sleep(llm_delay) # Fallback mechanism: Calculate feature weights dynamically if LLM fails if feature_weights is None: print("[WARN] LLM failed to provide feature weights. Calculating fallback weights dynamically.") feature_weights = calculate_fallback_weights(df) print(f"[INFO] Fallback feature weights: {feature_weights}", flush=True) # Ensure numeric columns are properly formatted for feature in feature_weights.keys(): if feature in df.columns: df[feature] = pd.to_numeric(df[feature], errors='coerce').fillna(0) def calculate_weight(row): weight = 0 for feature, feature_weight in feature_weights.items(): if feature in row: weight += row[feature] * feature_weight return weight df["base_weight_raw"] = df.apply(calculate_weight, axis=1) df["base_weight"] = df.groupby("parent")["base_weight_raw"].transform( lambda s: (s - s.min()) / (s.max() - s.min() if s.max() != s.min() else 1) ) end_time = time.time() print(f"[INFO] Base weights assigned successfully in {end_time - start_time:.2f} seconds.", flush=True) logging.info(f"[INFO] Base weights assigned successfully in {end_time - start_time:.2f} seconds.") return df def calculate_fallback_weights(df): """ Dynamically calculate fallback feature weights based on feature variance and correlation with the target. """ print("[INFO] Calculating fallback feature weights...") numeric_cols = df.select_dtypes(include=[np.number]).columns feature_variances = df[numeric_cols].var() total_variance = feature_variances.sum() # Assign weights proportional to feature variance fallback_weights = {col: var / total_variance for col, var in feature_variances.items() if total_variance > 0} return fallback_weights def sanity_check_weights(df): """ Sanity-checks LLM weights by comparing them with other metrics. """ print("[INFO] Performing sanity check on LLM weights...") df["sanity_check_weight"] = (df["stars"] + df["forks"] + df["watchers"]) / 3 df["ensemble_weight"] = (df["base_weight"] + df["sanity_check_weight"]) / 2 print("[INFO] Sanity check and ensemble weights added.") return df def visualize_feature_distributions(df): """ Visualizes feature distributions and correlations. """ print("[INFO] Visualizing feature distributions and correlations...") numeric_cols = df.select_dtypes(include=[np.number]).columns # Plot feature distributions df[numeric_cols].hist(bins=20, figsize=(15, 10), color="skyblue", edgecolor="black") plt.suptitle("Feature Distributions", fontsize=16) plt.show() # Plot feature correlations correlation_matrix = df[numeric_cols].corr() plt.figure(figsize=(12, 8)) sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5) plt.title("Feature Correlation Matrix", fontsize=16) plt.show() def normalize_funding(df): """ Normalize funding weights for child repositories grouped by parent. """ print("[INFO] Normalizing funding weights...", flush=True) df["final_weight"] = df.groupby("parent")["final_weight"].transform( lambda x: x / x.sum() if x.sum() > 0 else 1 / len(x) ) print("[INFO] Funding weights normalized successfully.", flush=True) return df def prepare_dataset(file): print("[INFO] Starting dataset preparation...") start_time = time.time() df = load_data(file) if df is None: raise ValueError("Failed to load data.") if not {"repo", "parent"}.issubset(df.columns): raise ValueError("Input CSV must contain 'repo' and 'parent' columns.") print("[INFO] Fetching GitHub features...") df = fetch_github_features(df) print("[INFO] GitHub features fetched successfully.") print("[INFO] Cleaning data...") df = clean_data(df) print("[INFO] Data cleaned successfully.") print("[INFO] Assigning base weights using LLama model...") df = assign_base_weight(df) df = sanity_check_weights(df) # Add sanity-check and ensemble weights df = train_predict_weight(df) visualize_feature_distributions(df) # Add feature visualization df = normalize_funding(df) end_time = time.time() print(f"[INFO] Dataset preparation completed in {end_time - start_time:.2f} seconds.") return df ############################## # Data Cleaning ############################## def clean_data(df): """ Cleans the input DataFrame by handling missing values and removing outliers. """ # Impute missing values df.fillna(df.median(numeric_only=True), inplace=True) # Remove extreme outliers using quantiles for col in df.select_dtypes(include=[np.number]).columns: q1 = df[col].quantile(0.25) q3 = df[col].quantile(0.75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)] return df ############################## # Feature Validation and Scaling ############################## def validate_features(df): """ Validates and scales features to ensure they are meaningful for model training. """ print("[INFO] Validating and scaling features...") numeric_cols = df.select_dtypes(include=[np.number]).columns scaler = StandardScaler() # Log feature distributions for col in numeric_cols: print(f"[DEBUG] Feature '{col}' - Mean: {df[col].mean()}, Std: {df[col].std()}, Min: {df[col].min()}, Max: {df[col].max()}") # Scale numeric features df[numeric_cols] = scaler.fit_transform(df[numeric_cols]) print("[INFO] Features scaled successfully.") return df def validate_target(df): """ Validates the target variable to ensure it has sufficient variance. """ print("[INFO] Validating target variable 'base_weight'...") target = "base_weight" if target not in df.columns: raise ValueError(f"Target variable '{target}' not found in DataFrame.") variance = df[target].var() print(f"[DEBUG] Target variable variance: {variance}") if variance < 1e-6: raise ValueError(f"Target variable '{target}' has insufficient variance. Please check feature values.") return df ############################## # RandomForest Regression ############################## def train_predict_weight(df): """ Trains a RandomForestRegressor with hyperparameter tuning and evaluates the model. """ print("[INFO] Starting weight prediction with hyperparameter tuning...", flush=True) start_time = time.time() target = "base_weight" feature_cols = [col for col in df.columns if col not in ["repo", "parent", "base_weight", "final_weight"]] # Validate and scale features df = validate_features(df) # Validate target variable df = validate_target(df) X = df[feature_cols] y = df[target] # Split data into train/test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Hyperparameter tuning using GridSearchCV param_grid = { "n_estimators": [100, 200, 300], "max_depth": [10, 15, 20], "min_samples_split": [2, 5, 10], "min_samples_leaf": [1, 2, 4] } rf = RandomForestRegressor(random_state=42) grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=3, scoring="neg_mean_squared_error", verbose=2) grid_search.fit(X_train, y_train) # Best model best_rf = grid_search.best_estimator_ print(f"[INFO] Best parameters: {grid_search.best_params_}") # Evaluate on test set y_pred = best_rf.predict(X_test) mse = mean_squared_error(y_test, y_pred) print(f"[INFO] Test MSE: {mse}") # Feature importance analysis feature_importances = best_rf.feature_importances_ importance_df = pd.DataFrame({"Feature": feature_cols, "Importance": feature_importances}).sort_values(by="Importance", ascending=False) print("[INFO] Feature importances:") print(importance_df) # Drop irrelevant features irrelevant_features = importance_df[importance_df["Importance"] < 0.01]["Feature"].tolist() print(f"[INFO] Dropping irrelevant features: {irrelevant_features}") df.drop(columns=irrelevant_features, inplace=True) # Plot predictions vs. actual values plt.scatter(y_test, y_pred, alpha=0.5) plt.xlabel("Actual Base Weight") plt.ylabel("Predicted Base Weight") plt.title("Predictions vs. Actual") plt.show() # Assign predictions to DataFrame df["final_weight"] = best_rf.predict(X) end_time = time.time() print(f"[INFO] Weight prediction completed in {end_time - start_time:.2f} seconds.", flush=True) return df ############################## # CSV Output ############################## def create_submission_csv(df, output_filename="submission.csv"): print(f"[INFO] Writing results to {output_filename}...", flush=True) required_cols = ["repo", "parent", "final_weight"] submission_df = df[required_cols] submission_df.to_csv(output_filename, index=False) print(f"[INFO] Results written to {output_filename}.", flush=True) return output_filename # Removed Gradio UI code from this file to ensure modular workflow. # This file now focuses solely on data processing and prediction. if __name__ == "__main__": input_file = "input.csv" # Replace with the actual input file path output_file = "submission.csv" print("[INFO] Preparing dataset...") df = prepare_dataset(input_file) print("[INFO] Creating submission CSV...") create_submission_csv(df, output_file) print("[INFO] Process completed successfully.")