Spaces:
Sleeping
Sleeping
Commit
·
ba26d2b
1
Parent(s):
9c2accc
Oracle weight assigning update
Browse files- Oracle/SmolLM.py +16 -7
Oracle/SmolLM.py
CHANGED
@@ -1,29 +1,38 @@
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
|
3 |
class SmolLM:
|
4 |
def __init__(self, model_path="HuggingFaceTB/SmolLM2-1.7B-Instruct"):
|
5 |
self.available = True
|
|
|
6 |
try:
|
7 |
print(f"[INFO] Loading Oracle tokenizer from {model_path}")
|
8 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
9 |
-
print(f"[INFO] Loading Oracle from {model_path}")
|
10 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
11 |
print("[INFO] Oracle loaded successfully")
|
12 |
except Exception as e:
|
13 |
print(f"[ERROR] Failed to load model '{model_path}': {e}")
|
14 |
self.available = False
|
15 |
|
16 |
-
def predict(self, prompt,max_length=512,max_new_tokens=150):
|
17 |
if not self.available:
|
18 |
print("[WARN] Oracle unavailable, returning default weight 0.5")
|
19 |
return "0.5"
|
20 |
try:
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
print(f"[INFO] Generated response: {response[:100]}...", flush=True)
|
26 |
return response
|
27 |
except Exception as e:
|
28 |
print(f"[ERROR] Oracle has failed: {e}")
|
29 |
-
return "0.5"
|
|
|
1 |
+
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
class SmolLM:
|
5 |
def __init__(self, model_path="HuggingFaceTB/SmolLM2-1.7B-Instruct"):
|
6 |
self.available = True
|
7 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
try:
|
9 |
print(f"[INFO] Loading Oracle tokenizer from {model_path}")
|
10 |
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
11 |
+
print(f"[INFO] Loading Oracle from {model_path} on {self.device}")
|
12 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path).to(self.device)
|
13 |
print("[INFO] Oracle loaded successfully")
|
14 |
except Exception as e:
|
15 |
print(f"[ERROR] Failed to load model '{model_path}': {e}")
|
16 |
self.available = False
|
17 |
|
18 |
+
def predict(self, prompt, max_length=512, max_new_tokens=150):
|
19 |
if not self.available:
|
20 |
print("[WARN] Oracle unavailable, returning default weight 0.5")
|
21 |
return "0.5"
|
22 |
try:
|
23 |
+
# Use chat template as per documentation
|
24 |
+
messages = [{"role": "user", "content": prompt}]
|
25 |
+
inputs = self.tokenizer.apply_chat_template(messages, return_tensors="pt").to(self.device)
|
26 |
+
outputs = self.model.generate(
|
27 |
+
inputs,
|
28 |
+
max_new_tokens=max_new_tokens,
|
29 |
+
temperature=0.7,
|
30 |
+
top_p=0.9,
|
31 |
+
do_sample=True
|
32 |
+
)
|
33 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
print(f"[INFO] Generated response: {response[:100]}...", flush=True)
|
35 |
return response
|
36 |
except Exception as e:
|
37 |
print(f"[ERROR] Oracle has failed: {e}")
|
38 |
+
return "0.5"
|