DeepFundingOracle / Oracle /deepfundingoracle.py
FelixPhilip's picture
Oracle
afb6533
raw
history blame
16 kB
"""
DeepFunding Oracle:
This script dynamically loads dependency data and for each repository URL:
• Fetches GitHub features (stars, forks, watchers, open issues, pull requests, activity) using the GitHub API.
• Uses the LLama model to analyze parent-child behavior (based on the fetched features and parent info)
and returns a base weight (0-1) for the repository.
• Trains a RandomForest regressor on these features (with the base weight as the target) to predict a final weight.
The output submission CSV has three columns: repo, parent, and final_weight.
"""
import base64
from io import StringIO
import os
import warnings
import csv
import re
import requests
import numpy as np
import pandas as pd
import time
import threading
import logging
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import signal
from tqdm import tqdm
import sys
import re
import json
import time
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from Oracle.SmolLM import SmolLM
warnings.filterwarnings("ignore")
# Configure logging to file and console
logging.basicConfig(
handlers=[
logging.FileHandler("deepfundingoracle.log"),
logging.StreamHandler(sys.stdout)
],
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
##############################
# GitHub API helper: Fetch repository metrics
##############################
def fetch_repo_metrics(repo_url):
"""
Fetch GitHub metrics (stars, forks, watchers, open issues, pull requests, and activity) given a repository URL.
Assumes repo_url is in the form "https://github.com/owner/repo".
"""
try:
# Extract owner and repo name
m = re.search(r"github\.com/([^/]+)/([^/]+)", repo_url)
if not m:
return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0}
owner, repo_name = m.group(1), m.group(2)
api_url = f"https://api.github.com/repos/{owner}/{repo_name}"
headers = {}
token = os.environ.get("GITHUB_API_TOKEN", "")
if token: headers["Authorization"] = f"token {token}"
r = requests.get(api_url, headers=headers)
if r.status_code == 200:
data = r.json()
pulls_url = data.get("pulls_url", "").replace("{\/*state}", "")
pulls_count = len(requests.get(pulls_url, headers=headers).json()) if pulls_url else 0
activity = data.get("updated_at", "")
return {
"stargazers_count": data.get("stargazers_count", 0),
"forks_count": data.get("forks_count", 0),
"watchers_count": data.get("watchers_count", 0),
"open_issues_count": data.get("open_issues_count", 0),
"pulls_count": pulls_count,
"activity": activity,
"owner": owner,
"repo_name": repo_name,
"token": token
}
else:
return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0}
except Exception:
return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0}
##############################
# Feature Extraction
##############################
def load_data(file):
"""
Dynamically load the dependency data CSV from the uploaded file.
Expects at least "repo" and "parent" columns.
"""
try:
print("[INFO] Loading data from uploaded file...")
start_time = time.time()
# Read the uploaded file directly into a DataFrame
df = pd.read_csv(file)
end_time = time.time()
print(f"[INFO] Data loaded successfully in {end_time - start_time:.2f} seconds.")
return df
except Exception as e:
print("[ERROR] Error loading data:", e)
return None
def fetch_github_features(df):
"""
For each row, using the repo URL, call the GitHub API to fetch:
stars, forks, watchers, open issues, pull requests, activity, and contributors count.
Adds these as new columns to the DataFrame.
"""
print("[INFO] Fetching GitHub features for repositories...")
start_time = time.time()
stars_list = []
forks_list = []
watchers_list = []
issues_list = []
pulls_list = []
activity_list = []
contributors_list = []
dependencies_list =[]
cache = {}
def get_metrics(repo_url):
if repo_url in cache:
return cache[repo_url]
val = fetch_repo_metrics(repo_url)
try:
m = re.search(r"github\.com/([^/]+)/([^/]+)",repo_url)
if m:
owner, repo_name = m.group(1), m.group(2)
pkg_url = f"https://api.github.com/repos/{owner}/{repo_name}/packages.json"
headers = {}
token = os.environ.get("GITHUB_API_TOKEN", "")
if token:
headers["Authorization"] = f"token {token}"
pkg_resp = requests.get(pkg_url, headers=headers)
if pkg_resp.status_code ==200:
pkg_data = pkg_resp.json()
content = base64.b64decode(pkg_data["content",""]).decode("utf-8")
pkg_json = json.loads(content)
dependencies = pkg_json.get("dependencies", {})
val["dependencies_count"] = len(dependencies)
else:
val["dependencies_count"] = 0
else:
val["dependencies_count"] = 0
except Exception:
val["dependencies_count"] = 0
cache[repo_url] = val
return val
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = {executor.submit(get_metrics, row['repo']): i for i, row in df.iterrows()}
for fut in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Fetching metrics"):
res = fut.result()
stars_list.append(res.get("stargazers_count", 0))
forks_list.append(res.get("forks_count", 0))
watchers_list.append(res.get("watchers_count", 0))
issues_list.append(res.get("open_issues_count", 0))
pulls_list.append(res.get("pulls_count", 0))
activity_list.append(res.get("activity", 0))
dependencies_list.append(res.get("dependencies_count", 0))
# Fetch contributors count
try:
contributors_url = f"https://api.github.com/repos/{res['owner']}/{res['repo_name']}/contributors"
headers = {"Authorization": f"token {res['token']}"}
contributors_response = requests.get(contributors_url, headers=headers)
if contributors_response.status_code == 200:
contributors_list.append(len(contributors_response.json()))
else:
contributors_list.append(0)
except Exception:
contributors_list.append(0)
df["stars"] = stars_list
df["forks"] = forks_list
df["watchers"] = watchers_list
df["open_issues"] = issues_list
df["pulls"] = pulls_list
df["activity"] = activity_list
df["contributors"] = contributors_list
df["dependencies_count"] = dependencies_list
end_time = time.time()
print(f"[INFO] GitHub features fetched successfully in {end_time - start_time:.2f} seconds.")
return df
def timeout_handler(signum, frame):
raise TimeoutError("LLama model prediction timed out.")
def assign_base_weight(df, max_workers=32, llm_retries=2, llm_delay=0):
"""
Assign base weights using a single LLM call to determine feature weights,
and programmatically calculate repository weights.
"""
print("[INFO] Starting optimized base weight assignment...", flush=True)
logging.info("[INFO] Assigning base weights using optimized approach...")
start_time = time.time()
oracle = SmolLM()
prompt = (
"Can you Predict a weight in the range (0-1) for these github features such as stars,forks,watchers,open_issues,pulls,activity,contributors based on its importance in determining "
"the influence of a repository. Output the weights for each feature as text e.g.: "
'stars: 0.3, forks: 0.2, watchers: 0.2, open_issues: 0.1, pulls: 0.1, activity: 0.05, contributors: 0.05'
)
feature_weights = None
for attempt in range(llm_retries):
try:
response = oracle.predict(prompt, max_length=512, max_new_tokens=150)
if not response or not response.strip():
raise ValueError("Empty response from Oracle.")
matches = re.findall(
r'(stars|forks|watchers|open_issues|pulls|activity|contributors)\s*[:=]\s*([0-9]*\.?[0-9]+)',
response, re.IGNORECASE)
feature_weights = {k.lower(): float(v) for k, v in matches}
if not feature_weights or len(feature_weights) < 7:
raise ValueError("Could not extract all feature weights from response.")
print(f"[INFO] Feature weights from LLM: {feature_weights}", flush=True)
break
except Exception as e:
print(f"[ERROR] Oracle attempt {attempt+1} failed: {e}", flush=True)
logging.error(f"[ERROR] Oracle attempt {attempt+1} failed: {e}")
time.sleep(llm_delay)
if feature_weights is None:
feature_weights = {
"stars": 0.3,
"forks": 0.2,
"watchers": 0.2,
"open_issues": 0.1,
"pulls": 0.1,
"activity": 0.05,
"contributors": 0.05
}
print(f"[INFO] Using default feature weights: {feature_weights}", flush=True)
for feature in feature_weights.keys():
if feature in df.columns:
df[feature] = pd.to_numeric(df[feature], errors='coerce').fillna(0)
def calculate_weight(row):
weight = 0
for feature, feature_weight in feature_weights.items():
if feature in row:
weight += row[feature] * feature_weight
return weight
df["base_weight_raw"] = df.apply(calculate_weight, axis=1)
df["base_weight"] = df.groupby("parent")["base_weight_raw"].transform(
lambda s: (s - s.min()) / (s.max() - s.min() if s.max() != s.min() else 1)
)
end_time = time.time()
print(f"[INFO] Base weights assigned successfully in {end_time - start_time:.2f} seconds.", flush=True)
logging.info(f"[INFO] Base weights assigned successfully in {end_time - start_time:.2f} seconds.")
return df
def normalize_funding(df):
"""
Normalize funding weights for child repositories grouped by parent.
"""
print("[INFO] Normalizing funding weights...", flush=True)
df["final_weight"] = df.groupby("parent")["final_weight"].transform(
lambda x: x / x.sum() if x.sum() > 0 else 1 / len(x)
)
print("[INFO] Funding weights normalized successfully.", flush=True)
return df
def prepare_dataset(file):
print("[INFO] Starting dataset preparation...")
start_time = time.time()
df = load_data(file)
if df is None:
raise ValueError("Failed to load data.")
if not {"repo", "parent"}.issubset(df.columns):
raise ValueError("Input CSV must contain 'repo' and 'parent' columns.")
print("[INFO] Fetching GitHub features...")
df = fetch_github_features(df)
print("[INFO] GitHub features fetched successfully.")
print("[INFO] Assigning base weights using LLama model...")
df = assign_base_weight(df)
df = train_predict_weight(df)
df = normalize_funding(df)
end_time = time.time()
print(f"[INFO] Dataset preparation completed in {end_time - start_time:.2f} seconds.")
return df
##############################
# RandomForest Regression
##############################
def train_predict_weight(df,
criterion='gini',
max_features='auto',
max_depth=12,
min_samples_split=2,
min_samples_leaf=1):
"""
Uses a RandomForestRegressor to predict a repository weight based on GitHub features.
The regressor is tuned with provided hyperparameters.
A flag column 'is_source' is used to indicate if a repository is the primary source.
If none is flagged, the repo with the highest prediction is set as the parent.
"""
print("[INFO] Starting weight prediction...", flush=True)
start_time = time.time()
target = "base_weight"
feature_cols = ["stars", "forks", "watchers", "open_issues", "pulls", "activity", "contributors"]
if "activity" in df.columns:
df["activity"] = pd.to_datetime(df["activity"], errors="coerce", utc=True)
now = pd.Timestamp.now(tz="UTC")
df["activity"] = (now - df["activity"]).dt.days.fillna(-1)
if target not in df.columns:
raise ValueError("Base weight column missing.")
X = df[feature_cols]
y = df[target]
# For regression, if a classification criterion is given, switch to 'mse'
reg_criterion = "squared_error" if criterion in ["gini", "entropy"] else criterion
rf_model = RandomForestRegressor(random_state=42,
criterion=reg_criterion,
max_features=max_features,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
n_estimators=200)
rf_model.fit(X, y)
df["rf_pred"] = rf_model.predict(X)
# Provide feedback about one of the trees in the RF
try:
depth = rf_model.estimators_[0].get_depth()
leaves = rf_model.estimators_[0].get_n_leaves()
print(f"[INFO] RF tree depth: {depth}, number of leaves: {leaves}", flush=True)
except Exception:
pass
parent_map = df.groupby("parent")["repo"].apply(list).to_dict()
final_weights = {}
for parent, children in parent_map.items():
group_idxs = df[df["parent"] == parent].index
preds = df.loc[group_idxs, "rf_pred"]
total = preds.sum()
if total > 0:
normed = preds / total
else:
# If sum is zero, assign equal weights.
normed = pd.Series([1/len(preds)] * len(preds), index=preds.index)
for idx, weight in normed.items():
final_weights[idx] = weight
df["final_weight"] = df.index.map(final_weights).fillna(0.0)
end_time = time.time()
print(f"[INFO] Weight prediction completed in {end_time - start_time:.2f} seconds.", flush=True)
return df
##############################
# CSV Output
##############################
def create_submission_csv(df, output_filename="submission.csv"):
print(f"[INFO] Writing results to {output_filename}...", flush=True)
required_cols = ["repo", "parent", "final_weight"]
submission_df = df[required_cols]
submission_df.to_csv(output_filename, index=False)
print(f"[INFO] Results written to {output_filename}.", flush=True)
return output_filename
# Removed Gradio UI code from this file to ensure modular workflow.
# This file now focuses solely on data processing and prediction.
if __name__ == "__main__":
input_file = "input.csv" # Replace with the actual input file path
output_file = "submission.csv"
print("[INFO] Preparing dataset...")
df = prepare_dataset(input_file)
print("[INFO] Creating submission CSV...")
create_submission_csv(df, output_file)
print("[INFO] Process completed successfully.")