File size: 16,863 Bytes
513a1f2
 
 
 
 
 
 
 
 
6282a14
513a1f2
 
 
 
 
 
 
 
 
 
 
 
dc9d402
513a1f2
607473c
 
513a1f2
 
16532e0
274692a
e8254b1
722cfc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513a1f2
17c5050
607473c
722cfc4
 
 
 
513a1f2
722cfc4
513a1f2
 
 
 
 
35a6d7e
513a1f2
 
 
bf9b592
513a1f2
bf9b592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
722cfc4
513a1f2
ed0fab0
513a1f2
 
 
35a6d7e
 
513a1f2
35a6d7e
 
 
 
 
 
 
 
 
 
513a1f2
35a6d7e
513a1f2
722cfc4
ea68d4a
513a1f2
 
 
722cfc4
ea68d4a
 
722cfc4
 
 
 
 
 
ea68d4a
722cfc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a6d7e
722cfc4
 
 
 
 
ea68d4a
513a1f2
 
722cfc4
 
 
 
 
 
 
 
 
 
 
513a1f2
722cfc4
 
513a1f2
722cfc4
513a1f2
35a6d7e
 
 
 
 
 
 
 
 
 
722cfc4
 
35a6d7e
 
 
 
 
513a1f2
722cfc4
35a6d7e
513a1f2
 
ea68d4a
 
 
 
513a1f2
35a6d7e
dc9d402
35a6d7e
 
dc9d402
35a6d7e
 
 
 
 
57ca96a
35a6d7e
57ca96a
35a6d7e
 
 
 
 
 
 
57ca96a
722cfc4
 
35a6d7e
 
 
 
 
 
722cfc4
35a6d7e
 
722cfc4
35a6d7e
 
 
 
 
 
 
 
 
 
 
 
722cfc4
35a6d7e
722cfc4
35a6d7e
 
 
 
722cfc4
513a1f2
 
 
2424d59
c926705
911b780
35a6d7e
 
c926705
35a6d7e
 
 
 
 
 
 
 
 
 
 
 
513a1f2
 
 
3388ab8
 
 
 
 
35a6d7e
 
17c5050
35a6d7e
 
17c5050
35a6d7e
17c5050
35a6d7e
 
 
 
 
 
 
17c5050
 
513a1f2
722cfc4
513a1f2
3388ab8
6282a14
722cfc4
6282a14
35a6d7e
722cfc4
35a6d7e
 
 
 
 
 
722cfc4
 
35a6d7e
722cfc4
 
 
 
 
35a6d7e
 
722cfc4
 
35a6d7e
722cfc4
35a6d7e
722cfc4
35a6d7e
 
 
 
 
 
 
722cfc4
 
 
 
 
 
 
607473c
35a6d7e
722cfc4
607473c
722cfc4
 
607473c
722cfc4
 
 
35a6d7e
722cfc4
35a6d7e
 
607473c
513a1f2
 
10a4c8e
513a1f2
 
 
 
722cfc4
35a6d7e
 
722cfc4
35a6d7e
722cfc4
513a1f2
 
 
722cfc4
 
 
 
 
 
 
 
 
 
 
955c99b
722cfc4
 
 
35a6d7e
722cfc4
35a6d7e
 
722cfc4
955c99b
722cfc4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
"""
DeepFunding Oracle:
This script dynamically loads dependency data and for each repository URL:
  • Fetches GitHub features (stars, forks, watchers, open issues, pull requests, activity) using the GitHub API.
  • Uses the LLama model to analyze parent-child behavior (based on the fetched features and parent info)
    and returns a base weight (0-1) for the repository.
  • Trains a RandomForest regressor on these features (with the base weight as the target) to predict a final weight.
The output submission CSV has three columns: repo, parent, and final_weight.
"""
import base64
from io import StringIO
import os
import warnings
import csv
import re
import requests
import numpy as np
import pandas as pd
import time
import threading
import logging
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import signal

from sklearn.pipeline import Pipeline
from tqdm import tqdm
import sys
import re
import json
import time
import json
import time
import logging
import sys
import warnings
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import numpy as np
import pandas as pd
import requests
from tqdm import tqdm
from scipy.special import log1p, expm1
from sklearn.model_selection import RandomizedSearchCV, GroupKFold
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV,KFold
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from scipy.special import log1p, expm1
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
from scipy.special import log1p, expm1
from Oracle.SmolLM import SmolLM
import os
warnings.filterwarnings("ignore")

# Configure logging to file and console
logging.basicConfig(
    handlers=[
        logging.FileHandler("deepfundingoracle.log", mode='w'),
        logging.StreamHandler(sys.stdout)
    ],
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s")

# Add these functions to make the pipeline importable by app.py


def prepare_dataset(file_path):
    """
    Wrapper function that prepares the dataset by:
    1. Loading the CSV
    2. Fetching GitHub features
    3. Adding derived features
    4. Cleaning data
    5. Generating base weights using LLM

    Args:
        file_path: Path to the input CSV file

    Returns:
        DataFrame with all features and base_weight prepared
    """
    logging.info(f"Preparing dataset from {file_path}")

    # Load data
    if isinstance(file_path, str):
        df = pd.read_csv(file_path)
    else:
        # Handle file object (from Gradio)
        df = pd.read_csv(file_path)

    # Check required columns
    if not {"repo", "parent"}.issubset(df.columns):
        raise ValueError("Input CSV must contain 'repo' and 'parent' columns.")

    # Run the pipeline steps
    df = fetch_github_features(df)
    df = add_derived_features(df)
    df = clean_data(df)
    df = generate_all_base_weights(df)

    return df


def run_full_pipeline(input_file, output_file="submission_enhanced.csv"):
    """
    Runs the complete DeepFunding Oracle pipeline.

    Args:
        input_file: Path to input CSV file
        output_file: Path for output CSV file

    Returns:
        The processed DataFrame with final_weight column
    """
    logging.info("--- Starting DeepFunding Oracle Pipeline ---")

    # Prepare dataset
    df = prepare_dataset(input_file)

    # Train model and predict weights
    df = train_predict_weight(df)

    # Normalize weights
    df = normalize_and_clip_weights(df)

    # Save results
    create_submission_csv(df, output_file)

    logging.info("--- Pipeline Completed Successfully ---")

    return df

##############################
#  GitHub API helper: Fetch repository metrics
##############################
def fetch_repo_metrics(repo_url):
    """
    Fetches GitHub metrics, handling API pagination to get accurate
    contributor and pull request counts.
    """
    default_metrics = {
                        "stars": 0,
                        "forks": 0,
                        "watchers": 0,
                        "open_issues": 0,
                        "pulls": 0,
                        "activity": pd.NaT,
                        "created_at":pd.NaT,
                        "contributors": 0
                    }
    try:
        m = re.search(r"github.com/([^/]+)/([^/]+)", repo_url)
        if not m:
            logging.warning(f"Malformed GitHub URL: {repo_url}")
            return default_metrics
        owner, repo_name = m.group(1), m.group(2)
        api_url = f"https://api.github.com/repos/{owner}/{repo_name}"
        headers = {}
        token = os.environ.get("GITHUB_API_TOKEN")
        if token:
            headers["Authorization"] = f"token {token}"

        r = requests.get(api_url, headers=headers, timeout=15)
        r.raise_for_status()
        data = r.json()

        def get_count_from_pagination(url, headers):
            try:
                resp = requests.get(f"{url}?per_page=1", headers=headers, timeout=10)
                if resp.status_code == 200 and 'Link' in resp.headers:
                    match = re.search(r'page=(\d+)>; rel="last"', resp.headers['Link'])
                    if match:
                        return int(match.group(1))
                return len(resp.json()) if resp.status_code == 200 else 0
            except requests.exceptions.RequestException:
                return 0

        return {
            "stars": data.get("stargazers_count", 0),
            "forks": data.get("forks_count", 0),
            "watchers": data.get("subscribers_count", 0),  # subscribers_count is a better 'watch' metric
            "open_issues": data.get("open_issues_count", 0),
            "activity": pd.to_datetime(data.get("updated_at")),
            "created_at": pd.to_datetime(data.get("created_at")),
            "contributors":  get_count_from_pagination(data['contributors_url'], headers),
            "pulls": get_count_from_pagination(data['pulls_url'].replace('{/number}', ''), headers)
        }
    except requests.exceptions.RequestException as e:
        logging.error(f"Failed to fetch data for {repo_url}: {e}")
        return default_metrics

def fetch_github_features(df):
    """Concurrently fetches GitHub features for all repositories in the DataFrame."""
    logging.info("Fetching GitHub features for repositories...")
    metrics_data = []
    with ThreadPoolExecutor(max_workers=20) as executor:
        future_to_url = {executor.submit(fetch_repo_metrics, url): url for url in df['repo']}
        for future in tqdm(concurrent.futures.as_completed(future_to_url), total=len(df), desc="Fetching GitHub Metrics"):
            metrics_data.append(future.result())
    return pd.concat([df.reset_index(drop=True), pd.DataFrame(metrics_data)], axis=1)


def add_derived_features(df):
    """
    RATIONALE (Recommendation 2): Adds derived temporal and interaction features like 'days_since_update'
    and 'stars_per_contributor' to give the model more powerful signals to learn from.
    """
    logging.info("Engineering derived features...")

    # Handle timestamp
    df['activity'] = pd.to_datetime(df['activity'], errors='coerce',utc=True)
    df['created_at'] = pd.to_datetime(df['created_at'], errors='coerce', utc=True)

    # Temporal features
    now = pd.Timestamp.now(tz='UTC')
    df['days_since_update'] = (now - df['activity']).dt.days
    df['repo_age_days'] = (now - df['created_at']).dt.days

    #Interactions and Ratio Features
    df['stars_per_contributor'] = df['stars'] / df['contributors'].clip(lower=1)
    df['forks_per_star'] = df['forks'] / df['stars'].clip(lower=1)
    df ['pulls_per_contributor'] = df['pulls'] / df['contributors'].clip(lower=1)
    df['stars_per_day'] = df['stars']/df['repo_age_days'].clip(lower=1)

    #Dependency features
    df['dependencies_count']= df.groupby('parent')['repo'].transform('count')

    numeric_cols = df.select_dtypes(include=np.number).columns
    df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].median())
    return df

##############################
#  Feature Extraction
##############################


def assign_base_weight_per_row(row, oracle):
    """
    RATIONALE: Asks the LLM to score each repo individually on a 0-1 scale based on its specific stats.
    This creates a much more accurate and nuanced target variable `base_weight` for the XGBoost model.
    """
    stats = (f"Stars: {int(row.get('stars', 0))}, "
             f"Contributors: {int(row.get('contributors', 0))}, "
             f"Pull Requests: {int(row.get('pulls', 0))}, "
             f"Days Since Last Update: {int(row.get('days_since_update', 0))}, "
             f"Repo Age (Days): {int(row.get('repo_age_days', 0))}")

    # <<< UPDATED: The prompt now asks for a score on a 0.0 to 1.0 scale. >>>
    prompt = (
        "You are a venture capitalist analyzing open-source projects for the Ethereum ecosystem. "
        f"A project named '{row['repo'].split('/')[-1]}' is a dependency of '{row['parent'].split('/')[-1]}'. "
        "Here are its key metrics: "
        f"[{stats}]. "
        "Based on these metrics, evaluate its standalone importance, community health, and development velocity. "
        "On a scale of 0.0 (minor, easily replaceable utility) to 1.0 (critical, foundational dependency), how would you score this project's value to its parent? "
        "Provide ONLY the numeric score in your answer. Example: 0.8"
    )

    try:
        response = oracle.predict(prompt, max_new_tokens=10)
        match = re.search(r"(\d+(\.\d+)?)", response)
        if match:
            return max(0.0, min(1.0, float(match.group(1))))
        logging.warning(f"Could not parse score from LLM for {row['repo']}. Defaulting.")
        return 0.4
    except Exception as e:
        logging.error(f"LLM prediction failed for {row['repo']}: {e}. Defaulting.")
        return 0.4

def generate_all_base_weights(df):
    """Applies the per-row LLM evaluation to the entire dataframe."""
    logging.info("Assigning robust base weights using per-row LLM evaluation...")
    oracle = SmolLM()
    if not oracle.available:
        logging.error("Oracle (LLM) is not available. Falling back to composite score.")
        df['base_weight'] = (
                np.log1p(df['stars']) * 0.4 +
                np.log1p(df['contributors']) * 0.4 +
                np.log1p(df['pulls']) * 0.2
        )
        return df

    df['base_weight'] = df.progress_apply(lambda row: assign_base_weight_per_row(row, oracle), axis=1)

    # This normalization step is kept as a crucial safeguard. It ensures the final `base_weight`
    # is scaled relative to its siblings, even if the LLM isn't perfectly calibrated.
    df['base_weight'] = df.groupby("parent")["base_weight"].transform(
        lambda s: (s - s.min()) / (s.max() - s.min() if s.max() > s.min() else 0.0)
    ).fillna(0.5)

    return df



def normalize_and_clip_weights(df, group_col="parent", weight_col="final_weight"):
    """Ensures final weights are non-negative and sum to 1 per group."""
    logging.info("Normalizing final weights...")
    df[weight_col] = df[weight_col].clip(lower=0)
    group_sums = df.groupby(group_col)[weight_col].transform('sum')

    # Normalize where sum > 0
    df[weight_col] = np.where(group_sums > 0, df[weight_col] / group_sums, 0)

    # Handle groups where the sum was 0 by distributing weight equally
    zero_sum_parents = df[group_sums == 0][group_col].unique()
    for parent in zero_sum_parents:
        mask = df[group_col] == parent
        count = mask.sum()
        if count > 0:
            df.loc[mask, weight_col] = 1 / count
    return df


##############################
#  Data Cleaning
##############################
def clean_data(df):
    """
    INTEGRATED: Cleans the DataFrame by imputing missing values and clipping extreme
    outliers, which helps stabilize the model.
    """
    logging.info("Cleaning data and handling outliers...")
    numeric_cols = df.select_dtypes(include=np.number).columns
    for col in numeric_cols:
        df[col].fillna(df[col].median(), inplace=True)

    # REFINED: Clip outliers using a wider percentile range (5% and 95%) which is often
    # more suitable for heavily skewed data like GitHub stats.
    for col in numeric_cols:
        if col not in ['repo_age_days', 'days_since_update']: # Don't clip age features
            q_low = df[col].quantile(0.05)
            q_high = df[col].quantile(0.95)
            df[col] = df[col].clip(q_low, q_high)
    return df

##############################
#  Model Training and Prediction
##############################
def train_predict_weight(df):
    """
    Trains an XGBoost Regressor with GroupKFold cross-validation and extensive hyperparameter tuning.
    """
    logging.info("Starting model training...")
    target_col = 'base_weight'
    if target_col not in df.columns or df[target_col].isnull().all():
        logging.error("Target column 'base_weight' is missing or all null. Aborting training.")
        df['final_weight'] = df['stars']
        return df

    drop_cols = ["repo", "parent", "activity", "created_at", target_col]
    feature_cols = [col for col in df.select_dtypes(include=np.number).columns if col not in drop_cols]

    X = df[feature_cols].copy().fillna(0)
    y = df[target_col]
    groups = df['parent']

    # RATIONALE (Recommendation 2): Log-transforming skewed input features helps the model by
    # making their distributions more normal, improving the performance of the regressor.
    for col in X.columns:
        if 'ratio' not in col and 'per' not in col and 'day' not in col:
            X[col] = np.log1p(X[col])


    pipeline = Pipeline([("scaler", RobustScaler()),
                         ("xgb", XGBRegressor(objective="reg:squarederror", n_jobs=-1, random_state=42, base_score=y.mean()))])

    param_dist = {
                'xgb__n_estimators': [100, 200, 300, 500],
                'xgb__max_depth': [3, 5, 7],
                'xgb__learning_rate': [0.01, 0.05, 0.1],
                'xgb__subsample': [0.7, 0.8, 0.9],
                'xgb__colsample_bytree': [0.7, 0.8, 0.9]
                }

    # RATIONALE (Recommendation 3): GroupKFold ensures that all repos from the same parent are in the
    # same fold. This prevents data leakage and gives a realistic measure of true performance.
    cv = GroupKFold(n_splits=5)

    # RATIONALE (Recommendation 4): Increasing n_iter explores more hyperparameter combinations,
    # increasing the chance of finding a better-performing model.
    search = RandomizedSearchCV(
        pipeline, param_distributions=param_dist, n_iter=25, cv=cv.split(X, y, groups),
        scoring="neg_root_mean_squared_error", verbose=1, n_jobs=-1, random_state=42
    )
    search.fit(X, y)

    best_model = search.best_estimator_
    logging.info(f"Best CV score (neg RMSE): {search.best_score_:.4f}")
    logging.info(f"Best parameters found: {search.best_params_}")

    raw_predictions = best_model.predict(X)

    # Apply a log transformation to raw predictions to stabilize variance before normalization.
    df['final_weight'] = np.log1p(raw_predictions - raw_predictions.min())

    return df


##############################
# CSV Output
##############################
def create_submission_csv(df, output_filename="submission.csv"):
    """Saves the final predictions to a CSV file."""
    # FIXED: Changed "weight" to "final_weight" to match the calculated column.
    submission_df = df[["repo", "parent", "final_weight"]]
    logging.info(f"Writing final results to {output_filename}...")
    submission_df.to_csv(output_filename, index=False)
    logging.info(f"Successfully created {output_filename}.")


if __name__ == "__main__":
    if 'GITHUB_API_TOKEN' not in os.environ:
        logging.warning("GITHUB_API_TOKEN environment variable not set. API rate limits will be low.")

    input_file = "input.csv"
    output_file = "submission_enhanced.csv"

    if not os.path.exists(input_file):
        logging.error(f"Input file not found: {input_file}. Please create it with 'repo' and 'parent' columns.")
        sys.exit(1)

    logging.info("--- Starting DeepFunding Oracle - Enhanced Process ---")

    main_df = pd.read_csv(input_file)
    main_df = fetch_github_features(main_df)
    main_df = add_derived_features(main_df)
    main_df = generate_all_base_weights(main_df)  # New LLM step with corrected prompt
    main_df = train_predict_weight(main_df)
    main_df = normalize_and_clip_weights(main_df)  # Final normalization step

    create_submission_csv(main_df, output_file)

    logging.info("--- Process Completed Successfully ---")