Spaces:
Sleeping
Sleeping
File size: 16,863 Bytes
513a1f2 6282a14 513a1f2 dc9d402 513a1f2 607473c 513a1f2 16532e0 274692a e8254b1 722cfc4 513a1f2 17c5050 607473c 722cfc4 513a1f2 722cfc4 513a1f2 35a6d7e 513a1f2 bf9b592 513a1f2 bf9b592 722cfc4 513a1f2 ed0fab0 513a1f2 35a6d7e 513a1f2 35a6d7e 513a1f2 35a6d7e 513a1f2 722cfc4 ea68d4a 513a1f2 722cfc4 ea68d4a 722cfc4 ea68d4a 722cfc4 35a6d7e 722cfc4 ea68d4a 513a1f2 722cfc4 513a1f2 722cfc4 513a1f2 722cfc4 513a1f2 35a6d7e 722cfc4 35a6d7e 513a1f2 722cfc4 35a6d7e 513a1f2 ea68d4a 513a1f2 35a6d7e dc9d402 35a6d7e dc9d402 35a6d7e 57ca96a 35a6d7e 57ca96a 35a6d7e 57ca96a 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 513a1f2 2424d59 c926705 911b780 35a6d7e c926705 35a6d7e 513a1f2 3388ab8 35a6d7e 17c5050 35a6d7e 17c5050 35a6d7e 17c5050 35a6d7e 17c5050 513a1f2 722cfc4 513a1f2 3388ab8 6282a14 722cfc4 6282a14 35a6d7e 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 607473c 35a6d7e 722cfc4 607473c 722cfc4 607473c 722cfc4 35a6d7e 722cfc4 35a6d7e 607473c 513a1f2 10a4c8e 513a1f2 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 513a1f2 722cfc4 955c99b 722cfc4 35a6d7e 722cfc4 35a6d7e 722cfc4 955c99b 722cfc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
"""
DeepFunding Oracle:
This script dynamically loads dependency data and for each repository URL:
• Fetches GitHub features (stars, forks, watchers, open issues, pull requests, activity) using the GitHub API.
• Uses the LLama model to analyze parent-child behavior (based on the fetched features and parent info)
and returns a base weight (0-1) for the repository.
• Trains a RandomForest regressor on these features (with the base weight as the target) to predict a final weight.
The output submission CSV has three columns: repo, parent, and final_weight.
"""
import base64
from io import StringIO
import os
import warnings
import csv
import re
import requests
import numpy as np
import pandas as pd
import time
import threading
import logging
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import signal
from sklearn.pipeline import Pipeline
from tqdm import tqdm
import sys
import re
import json
import time
import json
import time
import logging
import sys
import warnings
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import numpy as np
import pandas as pd
import requests
from tqdm import tqdm
from scipy.special import log1p, expm1
from sklearn.model_selection import RandomizedSearchCV, GroupKFold
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV,KFold
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from scipy.special import log1p, expm1
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
from scipy.special import log1p, expm1
from Oracle.SmolLM import SmolLM
import os
warnings.filterwarnings("ignore")
# Configure logging to file and console
logging.basicConfig(
handlers=[
logging.FileHandler("deepfundingoracle.log", mode='w'),
logging.StreamHandler(sys.stdout)
],
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s")
# Add these functions to make the pipeline importable by app.py
def prepare_dataset(file_path):
"""
Wrapper function that prepares the dataset by:
1. Loading the CSV
2. Fetching GitHub features
3. Adding derived features
4. Cleaning data
5. Generating base weights using LLM
Args:
file_path: Path to the input CSV file
Returns:
DataFrame with all features and base_weight prepared
"""
logging.info(f"Preparing dataset from {file_path}")
# Load data
if isinstance(file_path, str):
df = pd.read_csv(file_path)
else:
# Handle file object (from Gradio)
df = pd.read_csv(file_path)
# Check required columns
if not {"repo", "parent"}.issubset(df.columns):
raise ValueError("Input CSV must contain 'repo' and 'parent' columns.")
# Run the pipeline steps
df = fetch_github_features(df)
df = add_derived_features(df)
df = clean_data(df)
df = generate_all_base_weights(df)
return df
def run_full_pipeline(input_file, output_file="submission_enhanced.csv"):
"""
Runs the complete DeepFunding Oracle pipeline.
Args:
input_file: Path to input CSV file
output_file: Path for output CSV file
Returns:
The processed DataFrame with final_weight column
"""
logging.info("--- Starting DeepFunding Oracle Pipeline ---")
# Prepare dataset
df = prepare_dataset(input_file)
# Train model and predict weights
df = train_predict_weight(df)
# Normalize weights
df = normalize_and_clip_weights(df)
# Save results
create_submission_csv(df, output_file)
logging.info("--- Pipeline Completed Successfully ---")
return df
##############################
# GitHub API helper: Fetch repository metrics
##############################
def fetch_repo_metrics(repo_url):
"""
Fetches GitHub metrics, handling API pagination to get accurate
contributor and pull request counts.
"""
default_metrics = {
"stars": 0,
"forks": 0,
"watchers": 0,
"open_issues": 0,
"pulls": 0,
"activity": pd.NaT,
"created_at":pd.NaT,
"contributors": 0
}
try:
m = re.search(r"github.com/([^/]+)/([^/]+)", repo_url)
if not m:
logging.warning(f"Malformed GitHub URL: {repo_url}")
return default_metrics
owner, repo_name = m.group(1), m.group(2)
api_url = f"https://api.github.com/repos/{owner}/{repo_name}"
headers = {}
token = os.environ.get("GITHUB_API_TOKEN")
if token:
headers["Authorization"] = f"token {token}"
r = requests.get(api_url, headers=headers, timeout=15)
r.raise_for_status()
data = r.json()
def get_count_from_pagination(url, headers):
try:
resp = requests.get(f"{url}?per_page=1", headers=headers, timeout=10)
if resp.status_code == 200 and 'Link' in resp.headers:
match = re.search(r'page=(\d+)>; rel="last"', resp.headers['Link'])
if match:
return int(match.group(1))
return len(resp.json()) if resp.status_code == 200 else 0
except requests.exceptions.RequestException:
return 0
return {
"stars": data.get("stargazers_count", 0),
"forks": data.get("forks_count", 0),
"watchers": data.get("subscribers_count", 0), # subscribers_count is a better 'watch' metric
"open_issues": data.get("open_issues_count", 0),
"activity": pd.to_datetime(data.get("updated_at")),
"created_at": pd.to_datetime(data.get("created_at")),
"contributors": get_count_from_pagination(data['contributors_url'], headers),
"pulls": get_count_from_pagination(data['pulls_url'].replace('{/number}', ''), headers)
}
except requests.exceptions.RequestException as e:
logging.error(f"Failed to fetch data for {repo_url}: {e}")
return default_metrics
def fetch_github_features(df):
"""Concurrently fetches GitHub features for all repositories in the DataFrame."""
logging.info("Fetching GitHub features for repositories...")
metrics_data = []
with ThreadPoolExecutor(max_workers=20) as executor:
future_to_url = {executor.submit(fetch_repo_metrics, url): url for url in df['repo']}
for future in tqdm(concurrent.futures.as_completed(future_to_url), total=len(df), desc="Fetching GitHub Metrics"):
metrics_data.append(future.result())
return pd.concat([df.reset_index(drop=True), pd.DataFrame(metrics_data)], axis=1)
def add_derived_features(df):
"""
RATIONALE (Recommendation 2): Adds derived temporal and interaction features like 'days_since_update'
and 'stars_per_contributor' to give the model more powerful signals to learn from.
"""
logging.info("Engineering derived features...")
# Handle timestamp
df['activity'] = pd.to_datetime(df['activity'], errors='coerce',utc=True)
df['created_at'] = pd.to_datetime(df['created_at'], errors='coerce', utc=True)
# Temporal features
now = pd.Timestamp.now(tz='UTC')
df['days_since_update'] = (now - df['activity']).dt.days
df['repo_age_days'] = (now - df['created_at']).dt.days
#Interactions and Ratio Features
df['stars_per_contributor'] = df['stars'] / df['contributors'].clip(lower=1)
df['forks_per_star'] = df['forks'] / df['stars'].clip(lower=1)
df ['pulls_per_contributor'] = df['pulls'] / df['contributors'].clip(lower=1)
df['stars_per_day'] = df['stars']/df['repo_age_days'].clip(lower=1)
#Dependency features
df['dependencies_count']= df.groupby('parent')['repo'].transform('count')
numeric_cols = df.select_dtypes(include=np.number).columns
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].median())
return df
##############################
# Feature Extraction
##############################
def assign_base_weight_per_row(row, oracle):
"""
RATIONALE: Asks the LLM to score each repo individually on a 0-1 scale based on its specific stats.
This creates a much more accurate and nuanced target variable `base_weight` for the XGBoost model.
"""
stats = (f"Stars: {int(row.get('stars', 0))}, "
f"Contributors: {int(row.get('contributors', 0))}, "
f"Pull Requests: {int(row.get('pulls', 0))}, "
f"Days Since Last Update: {int(row.get('days_since_update', 0))}, "
f"Repo Age (Days): {int(row.get('repo_age_days', 0))}")
# <<< UPDATED: The prompt now asks for a score on a 0.0 to 1.0 scale. >>>
prompt = (
"You are a venture capitalist analyzing open-source projects for the Ethereum ecosystem. "
f"A project named '{row['repo'].split('/')[-1]}' is a dependency of '{row['parent'].split('/')[-1]}'. "
"Here are its key metrics: "
f"[{stats}]. "
"Based on these metrics, evaluate its standalone importance, community health, and development velocity. "
"On a scale of 0.0 (minor, easily replaceable utility) to 1.0 (critical, foundational dependency), how would you score this project's value to its parent? "
"Provide ONLY the numeric score in your answer. Example: 0.8"
)
try:
response = oracle.predict(prompt, max_new_tokens=10)
match = re.search(r"(\d+(\.\d+)?)", response)
if match:
return max(0.0, min(1.0, float(match.group(1))))
logging.warning(f"Could not parse score from LLM for {row['repo']}. Defaulting.")
return 0.4
except Exception as e:
logging.error(f"LLM prediction failed for {row['repo']}: {e}. Defaulting.")
return 0.4
def generate_all_base_weights(df):
"""Applies the per-row LLM evaluation to the entire dataframe."""
logging.info("Assigning robust base weights using per-row LLM evaluation...")
oracle = SmolLM()
if not oracle.available:
logging.error("Oracle (LLM) is not available. Falling back to composite score.")
df['base_weight'] = (
np.log1p(df['stars']) * 0.4 +
np.log1p(df['contributors']) * 0.4 +
np.log1p(df['pulls']) * 0.2
)
return df
df['base_weight'] = df.progress_apply(lambda row: assign_base_weight_per_row(row, oracle), axis=1)
# This normalization step is kept as a crucial safeguard. It ensures the final `base_weight`
# is scaled relative to its siblings, even if the LLM isn't perfectly calibrated.
df['base_weight'] = df.groupby("parent")["base_weight"].transform(
lambda s: (s - s.min()) / (s.max() - s.min() if s.max() > s.min() else 0.0)
).fillna(0.5)
return df
def normalize_and_clip_weights(df, group_col="parent", weight_col="final_weight"):
"""Ensures final weights are non-negative and sum to 1 per group."""
logging.info("Normalizing final weights...")
df[weight_col] = df[weight_col].clip(lower=0)
group_sums = df.groupby(group_col)[weight_col].transform('sum')
# Normalize where sum > 0
df[weight_col] = np.where(group_sums > 0, df[weight_col] / group_sums, 0)
# Handle groups where the sum was 0 by distributing weight equally
zero_sum_parents = df[group_sums == 0][group_col].unique()
for parent in zero_sum_parents:
mask = df[group_col] == parent
count = mask.sum()
if count > 0:
df.loc[mask, weight_col] = 1 / count
return df
##############################
# Data Cleaning
##############################
def clean_data(df):
"""
INTEGRATED: Cleans the DataFrame by imputing missing values and clipping extreme
outliers, which helps stabilize the model.
"""
logging.info("Cleaning data and handling outliers...")
numeric_cols = df.select_dtypes(include=np.number).columns
for col in numeric_cols:
df[col].fillna(df[col].median(), inplace=True)
# REFINED: Clip outliers using a wider percentile range (5% and 95%) which is often
# more suitable for heavily skewed data like GitHub stats.
for col in numeric_cols:
if col not in ['repo_age_days', 'days_since_update']: # Don't clip age features
q_low = df[col].quantile(0.05)
q_high = df[col].quantile(0.95)
df[col] = df[col].clip(q_low, q_high)
return df
##############################
# Model Training and Prediction
##############################
def train_predict_weight(df):
"""
Trains an XGBoost Regressor with GroupKFold cross-validation and extensive hyperparameter tuning.
"""
logging.info("Starting model training...")
target_col = 'base_weight'
if target_col not in df.columns or df[target_col].isnull().all():
logging.error("Target column 'base_weight' is missing or all null. Aborting training.")
df['final_weight'] = df['stars']
return df
drop_cols = ["repo", "parent", "activity", "created_at", target_col]
feature_cols = [col for col in df.select_dtypes(include=np.number).columns if col not in drop_cols]
X = df[feature_cols].copy().fillna(0)
y = df[target_col]
groups = df['parent']
# RATIONALE (Recommendation 2): Log-transforming skewed input features helps the model by
# making their distributions more normal, improving the performance of the regressor.
for col in X.columns:
if 'ratio' not in col and 'per' not in col and 'day' not in col:
X[col] = np.log1p(X[col])
pipeline = Pipeline([("scaler", RobustScaler()),
("xgb", XGBRegressor(objective="reg:squarederror", n_jobs=-1, random_state=42, base_score=y.mean()))])
param_dist = {
'xgb__n_estimators': [100, 200, 300, 500],
'xgb__max_depth': [3, 5, 7],
'xgb__learning_rate': [0.01, 0.05, 0.1],
'xgb__subsample': [0.7, 0.8, 0.9],
'xgb__colsample_bytree': [0.7, 0.8, 0.9]
}
# RATIONALE (Recommendation 3): GroupKFold ensures that all repos from the same parent are in the
# same fold. This prevents data leakage and gives a realistic measure of true performance.
cv = GroupKFold(n_splits=5)
# RATIONALE (Recommendation 4): Increasing n_iter explores more hyperparameter combinations,
# increasing the chance of finding a better-performing model.
search = RandomizedSearchCV(
pipeline, param_distributions=param_dist, n_iter=25, cv=cv.split(X, y, groups),
scoring="neg_root_mean_squared_error", verbose=1, n_jobs=-1, random_state=42
)
search.fit(X, y)
best_model = search.best_estimator_
logging.info(f"Best CV score (neg RMSE): {search.best_score_:.4f}")
logging.info(f"Best parameters found: {search.best_params_}")
raw_predictions = best_model.predict(X)
# Apply a log transformation to raw predictions to stabilize variance before normalization.
df['final_weight'] = np.log1p(raw_predictions - raw_predictions.min())
return df
##############################
# CSV Output
##############################
def create_submission_csv(df, output_filename="submission.csv"):
"""Saves the final predictions to a CSV file."""
# FIXED: Changed "weight" to "final_weight" to match the calculated column.
submission_df = df[["repo", "parent", "final_weight"]]
logging.info(f"Writing final results to {output_filename}...")
submission_df.to_csv(output_filename, index=False)
logging.info(f"Successfully created {output_filename}.")
if __name__ == "__main__":
if 'GITHUB_API_TOKEN' not in os.environ:
logging.warning("GITHUB_API_TOKEN environment variable not set. API rate limits will be low.")
input_file = "input.csv"
output_file = "submission_enhanced.csv"
if not os.path.exists(input_file):
logging.error(f"Input file not found: {input_file}. Please create it with 'repo' and 'parent' columns.")
sys.exit(1)
logging.info("--- Starting DeepFunding Oracle - Enhanced Process ---")
main_df = pd.read_csv(input_file)
main_df = fetch_github_features(main_df)
main_df = add_derived_features(main_df)
main_df = generate_all_base_weights(main_df) # New LLM step with corrected prompt
main_df = train_predict_weight(main_df)
main_df = normalize_and_clip_weights(main_df) # Final normalization step
create_submission_csv(main_df, output_file)
logging.info("--- Process Completed Successfully ---") |