Spaces:
Sleeping
Sleeping
File size: 1,914 Bytes
8d2615a 5866ba2 c8359bd 5866ba2 8d2615a 5866ba2 c8359bd 5866ba2 8d2615a 5866ba2 90d9abf c8359bd 5866ba2 8d2615a 5866ba2 c8359bd 383ca77 5866ba2 8d2615a c8359bd 5866ba2 c8359bd 5866ba2 c8359bd 8d2615a 67f1091 5866ba2 67f1091 5866ba2 67f1091 5866ba2 c8359bd 5866ba2 90d9abf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
# import part
import streamlit as st
from transformers import pipeline
from gtts import gTTS
import io
# function part
# img2text
def img2text(url):
image_to_text_model = pipeline("image-to-text",
model="Salesforce/blip-image-captioning-base")
text = image_to_text_model(url)[0]["generated_text"]
return text
# text2story
def text2story(text):
story_pipeline = pipeline("text-generation", model="agentica-org/DeepScaleR-1.5B-Preview")
result = story_pipeline(text, max_length=200, num_return_sequences=1)
story_text = result[0]['generated_text']
return story_text
# text2audio
def text2audio(story_text):
tts = gTTS(text=story_text, lang='en')
audio_file = io.BytesIO()
tts.write_to_fp(audio_file)
audio_file.seek(0)
return {'audio': audio_file, 'sampling_rate': 16000}
# main part
st.set_page_config(page_title="Your Image to Audio Story",
page_icon="🦜")
st.header("Turn Your Image to Audio Story")
uploaded_file = st.file_uploader("Select an Image...")
if uploaded_file is not None:
print(uploaded_file)
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Uploaded Image",
use_column_width=True)
# Stage 1: Image to Text
st.text('Processing img2text...')
scenario = img2text(uploaded_file.name)
st.write(scenario)
# Stage 2: Text to Story
st.text('Generating a story...')
story = text2story(scenario)
st.write(story)
# Stage 3: Story to Audio data
st.text('Generating audio data...')
audio_data = text2audio(story)
# Play button
if st.button("Play Audio"):
st.audio(audio_data['audio'],
format="audio/wav",
start_time=0,
sample_rate=audio_data['sampling_rate']) |