# Required for clustering_author function: import pandas as pd import numpy as np from sklearn.cluster import DBSCAN from sklearn.metrics import silhouette_score # Required for analyze_space_distance_preservation from sklearn.metrics.pairwise import cosine_distances, cosine_similarity from scipy.stats import pearsonr from typing import List, Dict, Any def _find_best_dbscan_eps(X: np.ndarray, eps_values: List[float], min_samples: int, metric: str) -> tuple[float | None, np.ndarray | None, float]: """ Iterates through eps_values for DBSCAN and returns the parameters that yield the highest silhouette score. Args: X (np.ndarray): The input data (embeddings). eps_values (List[float]): List of eps values to try. min_samples (int): DBSCAN min_samples parameter. metric (str): Distance metric for DBSCAN and silhouette score. Returns: tuple[float | None, np.ndarray | None, float]: - best_eps: The eps value that resulted in the best score. None if no suitable clustering. - best_labels: The cluster labels from the best DBSCAN run. None if no suitable clustering. - best_score: The highest silhouette score achieved. """ best_score = -1.001 # Silhouette score is in [-1, 1] best_labels = None best_eps = None for eps in eps_values: if eps <= 1e-9: # eps must be positive continue db = DBSCAN(eps=eps, min_samples=min_samples, metric=metric) labels = db.fit_predict(X) unique_labels_set = set(labels) n_clusters_ = len(unique_labels_set) - (1 if -1 in unique_labels_set else 0) if n_clusters_ > 1: clustered_mask = (labels != -1) if np.sum(clustered_mask) >= 2: # Need at least 2 non-noise points X_clustered = X[clustered_mask] labels_clustered = labels[clustered_mask] try: score = silhouette_score(X_clustered, labels_clustered, metric=metric) if score > best_score: best_score = score best_labels = labels.copy() best_eps = eps except ValueError: # Catch errors from silhouette_score pass elif n_clusters_ == 1 and best_labels is None: # Fallback for single cluster if not all(l == -1 for l in labels): current_score_for_single_cluster = -0.5 # Nominal score if current_score_for_single_cluster > best_score: best_score = current_score_for_single_cluster best_labels = labels.copy() best_eps = eps return best_eps, best_labels, best_score def clustering_author(background_corpus_df: pd.DataFrame, embedding_clm: str = 'style_embedding', eps_values: List[float] = None, min_samples: int = 5, metric: str = 'cosine') -> pd.DataFrame: """ Performs DBSCAN clustering on embeddings in a DataFrame. Experiments with different `eps` parameters to find a clustering that maximizes the silhouette score, indicating well-separated clusters. Args: background_corpus_df (pd.DataFrame): DataFrame with an embedding column. embedding_clm (str): Name of the column containing embeddings. Each embedding should be a list or NumPy array. eps_values (List[float], optional): Specific `eps` values to test. If None, a default range is used. For 'cosine' metric, eps is typically in [0, 2]. For 'euclidean', scale depends on embedding magnitudes. min_samples (int): DBSCAN `min_samples` parameter. Minimum number of samples in a neighborhood for a point to be a core point. metric (str): The distance metric to use for DBSCAN and silhouette score (e.g., 'cosine', 'euclidean'). Returns: pd.DataFrame: The input DataFrame with a new 'cluster_label' column. Labels are from the DBSCAN run with the highest silhouette score. If no suitable clustering is found, labels might be all -1 (noise). """ if embedding_clm not in background_corpus_df.columns: raise ValueError(f"Embedding column '{embedding_clm}' not found in DataFrame.") embeddings_list = background_corpus_df[embedding_clm].tolist() X_list = [] original_indices = [] # To map results back to the original DataFrame's indices for i, emb_val in enumerate(embeddings_list): if emb_val is not None: try: e = np.asarray(emb_val, dtype=float) if e.ndim == 1 and e.size > 0: # Standard 1D vector X_list.append(e) original_indices.append(i) elif e.ndim == 0 and e.size == 1: # Scalar value, treat as 1D vector of size 1 X_list.append(np.array([e.item()])) original_indices.append(i) # Silently skip empty arrays or improperly shaped arrays except (TypeError, ValueError): # Silently skip if conversion to float array fails pass # Initialize labels for all rows in the original DataFrame to -1 (noise/unprocessed) final_labels_for_df = pd.Series(-1, index=background_corpus_df.index, dtype=int) if not X_list: print(f"No valid embeddings found in column '{embedding_clm}'. Assigning all 'cluster_label' as -1.") background_corpus_df['cluster_label'] = final_labels_for_df return background_corpus_df X = np.array(X_list) # Creates a 2D array from the list of 1D arrays if X.shape[0] == 1: print("Only one valid embedding found. Assigning cluster label 0 to it.") if original_indices: # Should always be true if X.shape[0]==1 from X_list final_labels_for_df.iloc[original_indices[0]] = 0 background_corpus_df['cluster_label'] = final_labels_for_df return background_corpus_df if X.shape[0] < min_samples: print(f"Number of valid embeddings ({X.shape[0]}) is less than min_samples ({min_samples}). " f"All valid embeddings will be marked as noise (-1).") for original_idx in original_indices: final_labels_for_df.iloc[original_idx] = -1 background_corpus_df['cluster_label'] = final_labels_for_df return background_corpus_df if eps_values is None: if metric == 'cosine': eps_values = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] else: if X.shape[0] > 1: data_spread = np.std(X) eps_values = [round(data_spread * f, 2) for f in [0.25, 0.5, 1.0]] eps_values = [e for e in eps_values if e > 1e-6] if not eps_values or X.shape[0] <=1: eps_values = [0.5, 1.0, 1.5] print(f"Warning: `eps_values` not provided. Using default range for metric '{metric}': {eps_values}. " f"It's recommended to supply `eps_values` tuned to your data.") print(f"Performing DBSCAN clustering (min_samples={min_samples}, metric='{metric}') with eps values: " f"{[f'{e:.2f}' for e in eps_values]}") best_eps, best_labels, best_score = _find_best_dbscan_eps(X, eps_values, min_samples, metric) if best_labels is not None: num_found_clusters = len(set(best_labels) - {-1}) print(f"Best clustering found: eps={best_eps:.2f}, Silhouette Score={best_score:.4f} ({num_found_clusters} clusters).") for i, label in enumerate(best_labels): original_df_idx = original_indices[i] final_labels_for_df.iloc[original_df_idx] = label else: print("No suitable DBSCAN clustering found meeting criteria. All processed embeddings marked as noise (-1).") background_corpus_df['cluster_label'] = final_labels_for_df return background_corpus_df def _safe_embeddings_to_matrix(embeddings_column: pd.Series) -> np.ndarray: """ Converts a pandas Series of embeddings (expected to be lists of floats or 1D np.arrays) into a 2D NumPy matrix. Handles None values and attempts to stack consistently. Returns an empty 2D array (e.g., shape (0,0) or (0,D)) if conversion fails or no valid data. """ embeddings_list = embeddings_column.tolist() processed_1d_arrays = [] for emb in embeddings_list: if emb is not None: if hasattr(emb, '__iter__') and not isinstance(emb, (str, bytes)): try: arr = np.asarray(emb, dtype=float) if arr.ndim == 1 and arr.size > 0: processed_1d_arrays.append(arr) except (TypeError, ValueError): pass # Ignore embeddings that cannot be converted if not processed_1d_arrays: return np.empty((0,0)) # Check for consistent dimensionality before vstacking first_len = processed_1d_arrays[0].shape[0] consistent_embeddings = [arr for arr in processed_1d_arrays if arr.shape[0] == first_len] if not consistent_embeddings: return np.empty((0, first_len if processed_1d_arrays else 0)) # (0,D) or (0,0) try: return np.vstack(consistent_embeddings) except ValueError: # Should not happen if lengths are consistent return np.empty((0, first_len)) def _compute_cluster_centroids( df_clustered_items: pd.DataFrame, # DataFrame already filtered for non-noise items embedding_clm: str, cluster_label_clm: str ) -> Dict[Any, np.ndarray]: """Computes the centroid for each cluster from a pre-filtered DataFrame.""" centroids = {} if df_clustered_items.empty: return centroids for cluster_id, group in df_clustered_items.groupby(cluster_label_clm): embeddings_matrix = _safe_embeddings_to_matrix(group[embedding_clm]) if embeddings_matrix.ndim == 2 and embeddings_matrix.shape[0] > 0 and embeddings_matrix.shape[1] > 0: centroids[cluster_id] = np.mean(embeddings_matrix, axis=0) return centroids def _project_to_centroid_space( original_embeddings_matrix: np.ndarray, # (n_items, n_original_features) centroids_map: Dict[Any, np.ndarray] # {cluster_id: centroid_vector (n_original_features,)} ) -> np.ndarray: """Projects embeddings into a new space defined by cluster centroids using cosine similarity.""" if not centroids_map or original_embeddings_matrix.ndim != 2 or \ original_embeddings_matrix.shape[0] == 0 or original_embeddings_matrix.shape[1] == 0: return np.empty((original_embeddings_matrix.shape[0], 0)) # (n_items, 0_new_features) sorted_cluster_ids = sorted(centroids_map.keys()) valid_centroid_vectors = [] for cid in sorted_cluster_ids: centroid_vec = centroids_map[cid] if isinstance(centroid_vec, np.ndarray) and centroid_vec.ndim == 1 and \ centroid_vec.size == original_embeddings_matrix.shape[1]: valid_centroid_vectors.append(centroid_vec) if not valid_centroid_vectors: return np.empty((original_embeddings_matrix.shape[0], 0)) centroid_matrix = np.vstack(valid_centroid_vectors) # (n_valid_centroids, n_original_features) # Result: (n_items, n_valid_centroids) projected_matrix = cosine_similarity(original_embeddings_matrix, centroid_matrix) return projected_matrix def _get_pairwise_cosine_distances(embeddings_matrix: np.ndarray) -> np.ndarray: """Calculates unique pairwise cosine distances from an embedding matrix.""" if not isinstance(embeddings_matrix, np.ndarray) or embeddings_matrix.ndim != 2 or \ embeddings_matrix.shape[0] < 2 or embeddings_matrix.shape[1] == 0: return np.array([]) # Not enough samples or features dist_matrix = cosine_distances(embeddings_matrix) iu = np.triu_indices(dist_matrix.shape[0], k=1) # Upper triangle, excluding diagonal return dist_matrix[iu] def analyze_space_distance_preservation( df: pd.DataFrame, embedding_clm: str = 'style_embedding', cluster_label_clm: str = 'cluster_label' ) -> float | None: """ Analyzes how well a new space, defined by cluster centroids, preserves the cosine distance relationships from the original embedding space. Args: df (pd.DataFrame): DataFrame with original embeddings and cluster labels. embedding_clm (str): Column name for original embeddings. cluster_label_clm (str): Column name for cluster labels. Returns: float | None: Pearson correlation coefficient. Returns None if analysis cannot be performed (e.g., <2 clusters, <2 items), or 0.0 if correlation is NaN (e.g. due to zero variance in distances). """ df_valid_items = df[df[cluster_label_clm] != -1].copy() if df_valid_items.shape[0] < 2: return None # Need at least 2 items for pairwise distances original_embeddings_matrix = _safe_embeddings_to_matrix(df_valid_items[embedding_clm]) if original_embeddings_matrix.ndim != 2 or original_embeddings_matrix.shape[0] < 2 or \ original_embeddings_matrix.shape[1] == 0: return None # Valid matrix from original embeddings could not be formed centroids = _compute_cluster_centroids(df_valid_items, embedding_clm, cluster_label_clm) if len(centroids) < 2: # Need at least 2 centroids for a multi-dimensional new space return None projected_embeddings_matrix = _project_to_centroid_space(original_embeddings_matrix, centroids) if projected_embeddings_matrix.ndim != 2 or projected_embeddings_matrix.shape[0] < 2 or \ projected_embeddings_matrix.shape[1] < 2: # New space needs at least 2 dimensions (centroids) return None distances_original_space = _get_pairwise_cosine_distances(original_embeddings_matrix) distances_new_space = _get_pairwise_cosine_distances(projected_embeddings_matrix) if distances_original_space.size == 0 or distances_new_space.size == 0 or \ distances_original_space.size != distances_new_space.size: return None # Mismatch or empty distances # Handle cases where variance is zero in one of the distance arrays (leads to NaN correlation) if np.all(distances_new_space == distances_new_space[0]) or \ np.all(distances_original_space == distances_original_space[0]): return 0.0 # Correlation is undefined or 0 if one variable is constant try: correlation, _ = pearsonr(distances_original_space, distances_new_space) except ValueError: # Should be caught by variance checks, but as a safeguard return None if np.isnan(correlation): return 0.0 # Default for NaN correlation return correlation