explainability-tool-for-aa / utils /clustering_utils.py
Milad Alshomary
updates
3d73c8d
# Required for clustering_author function:
import pandas as pd
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn.metrics import silhouette_score
# Required for analyze_space_distance_preservation
from sklearn.metrics.pairwise import cosine_distances, cosine_similarity
from scipy.stats import pearsonr
from typing import List, Dict, Any
def _find_best_dbscan_eps(X: np.ndarray,
eps_values: List[float],
min_samples: int,
metric: str) -> tuple[float | None, np.ndarray | None, float]:
"""
Iterates through eps_values for DBSCAN and returns the parameters
that yield the highest silhouette score.
Args:
X (np.ndarray): The input data (embeddings).
eps_values (List[float]): List of eps values to try.
min_samples (int): DBSCAN min_samples parameter.
metric (str): Distance metric for DBSCAN and silhouette score.
Returns:
tuple[float | None, np.ndarray | None, float]:
- best_eps: The eps value that resulted in the best score. None if no suitable clustering.
- best_labels: The cluster labels from the best DBSCAN run. None if no suitable clustering.
- best_score: The highest silhouette score achieved.
"""
best_score = -1.001 # Silhouette score is in [-1, 1]
best_labels = None
best_eps = None
for eps in eps_values:
if eps <= 1e-9: # eps must be positive
continue
db = DBSCAN(eps=eps, min_samples=min_samples, metric=metric)
labels = db.fit_predict(X)
unique_labels_set = set(labels)
n_clusters_ = len(unique_labels_set) - (1 if -1 in unique_labels_set else 0)
if n_clusters_ > 1:
clustered_mask = (labels != -1)
if np.sum(clustered_mask) >= 2: # Need at least 2 non-noise points
X_clustered = X[clustered_mask]
labels_clustered = labels[clustered_mask]
try:
score = silhouette_score(X_clustered, labels_clustered, metric=metric)
if score > best_score:
best_score = score
best_labels = labels.copy()
best_eps = eps
except ValueError: # Catch errors from silhouette_score
pass
elif n_clusters_ == 1 and best_labels is None: # Fallback for single cluster
if not all(l == -1 for l in labels):
current_score_for_single_cluster = -0.5 # Nominal score
if current_score_for_single_cluster > best_score:
best_score = current_score_for_single_cluster
best_labels = labels.copy()
best_eps = eps
return best_eps, best_labels, best_score
def clustering_author(background_corpus_df: pd.DataFrame,
embedding_clm: str = 'style_embedding',
eps_values: List[float] = None,
min_samples: int = 5,
metric: str = 'cosine') -> pd.DataFrame:
"""
Performs DBSCAN clustering on embeddings in a DataFrame.
Experiments with different `eps` parameters to find a clustering
that maximizes the silhouette score, indicating well-separated clusters.
Args:
background_corpus_df (pd.DataFrame): DataFrame with an embedding column.
embedding_clm (str): Name of the column containing embeddings.
Each embedding should be a list or NumPy array.
eps_values (List[float], optional): Specific `eps` values to test.
If None, a default range is used.
For 'cosine' metric, eps is typically in [0, 2].
For 'euclidean', scale depends on embedding magnitudes.
min_samples (int): DBSCAN `min_samples` parameter. Minimum number of
samples in a neighborhood for a point to be a core point.
metric (str): The distance metric to use for DBSCAN and silhouette score
(e.g., 'cosine', 'euclidean').
Returns:
pd.DataFrame: The input DataFrame with a new 'cluster_label' column.
Labels are from the DBSCAN run with the highest silhouette score.
If no suitable clustering is found, labels might be all -1 (noise).
"""
if embedding_clm not in background_corpus_df.columns:
raise ValueError(f"Embedding column '{embedding_clm}' not found in DataFrame.")
embeddings_list = background_corpus_df[embedding_clm].tolist()
X_list = []
original_indices = [] # To map results back to the original DataFrame's indices
for i, emb_val in enumerate(embeddings_list):
if emb_val is not None:
try:
e = np.asarray(emb_val, dtype=float)
if e.ndim == 1 and e.size > 0: # Standard 1D vector
X_list.append(e)
original_indices.append(i)
elif e.ndim == 0 and e.size == 1: # Scalar value, treat as 1D vector of size 1
X_list.append(np.array([e.item()]))
original_indices.append(i)
# Silently skip empty arrays or improperly shaped arrays
except (TypeError, ValueError):
# Silently skip if conversion to float array fails
pass
# Initialize labels for all rows in the original DataFrame to -1 (noise/unprocessed)
final_labels_for_df = pd.Series(-1, index=background_corpus_df.index, dtype=int)
if not X_list:
print(f"No valid embeddings found in column '{embedding_clm}'. Assigning all 'cluster_label' as -1.")
background_corpus_df['cluster_label'] = final_labels_for_df
return background_corpus_df
X = np.array(X_list) # Creates a 2D array from the list of 1D arrays
if X.shape[0] == 1:
print("Only one valid embedding found. Assigning cluster label 0 to it.")
if original_indices: # Should always be true if X.shape[0]==1 from X_list
final_labels_for_df.iloc[original_indices[0]] = 0
background_corpus_df['cluster_label'] = final_labels_for_df
return background_corpus_df
if X.shape[0] < min_samples:
print(f"Number of valid embeddings ({X.shape[0]}) is less than min_samples ({min_samples}). "
f"All valid embeddings will be marked as noise (-1).")
for original_idx in original_indices:
final_labels_for_df.iloc[original_idx] = -1
background_corpus_df['cluster_label'] = final_labels_for_df
return background_corpus_df
if eps_values is None:
if metric == 'cosine':
eps_values = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
else:
if X.shape[0] > 1:
data_spread = np.std(X)
eps_values = [round(data_spread * f, 2) for f in [0.25, 0.5, 1.0]]
eps_values = [e for e in eps_values if e > 1e-6]
if not eps_values or X.shape[0] <=1:
eps_values = [0.5, 1.0, 1.5]
print(f"Warning: `eps_values` not provided. Using default range for metric '{metric}': {eps_values}. "
f"It's recommended to supply `eps_values` tuned to your data.")
print(f"Performing DBSCAN clustering (min_samples={min_samples}, metric='{metric}') with eps values: "
f"{[f'{e:.2f}' for e in eps_values]}")
best_eps, best_labels, best_score = _find_best_dbscan_eps(X, eps_values, min_samples, metric)
if best_labels is not None:
num_found_clusters = len(set(best_labels) - {-1})
print(f"Best clustering found: eps={best_eps:.2f}, Silhouette Score={best_score:.4f} ({num_found_clusters} clusters).")
for i, label in enumerate(best_labels):
original_df_idx = original_indices[i]
final_labels_for_df.iloc[original_df_idx] = label
else:
print("No suitable DBSCAN clustering found meeting criteria. All processed embeddings marked as noise (-1).")
background_corpus_df['cluster_label'] = final_labels_for_df
return background_corpus_df
def _safe_embeddings_to_matrix(embeddings_column: pd.Series) -> np.ndarray:
"""
Converts a pandas Series of embeddings (expected to be lists of floats or 1D np.arrays)
into a 2D NumPy matrix. Handles None values and attempts to stack consistently.
Returns an empty 2D array (e.g., shape (0,0) or (0,D)) if conversion fails or no valid data.
"""
embeddings_list = embeddings_column.tolist()
processed_1d_arrays = []
for emb in embeddings_list:
if emb is not None:
if hasattr(emb, '__iter__') and not isinstance(emb, (str, bytes)):
try:
arr = np.asarray(emb, dtype=float)
if arr.ndim == 1 and arr.size > 0:
processed_1d_arrays.append(arr)
except (TypeError, ValueError):
pass # Ignore embeddings that cannot be converted
if not processed_1d_arrays:
return np.empty((0,0))
# Check for consistent dimensionality before vstacking
first_len = processed_1d_arrays[0].shape[0]
consistent_embeddings = [arr for arr in processed_1d_arrays if arr.shape[0] == first_len]
if not consistent_embeddings:
return np.empty((0, first_len if processed_1d_arrays else 0)) # (0,D) or (0,0)
try:
return np.vstack(consistent_embeddings)
except ValueError:
# Should not happen if lengths are consistent
return np.empty((0, first_len))
def _compute_cluster_centroids(
df_clustered_items: pd.DataFrame, # DataFrame already filtered for non-noise items
embedding_clm: str,
cluster_label_clm: str
) -> Dict[Any, np.ndarray]:
"""Computes the centroid for each cluster from a pre-filtered DataFrame."""
centroids = {}
if df_clustered_items.empty:
return centroids
for cluster_id, group in df_clustered_items.groupby(cluster_label_clm):
embeddings_matrix = _safe_embeddings_to_matrix(group[embedding_clm])
if embeddings_matrix.ndim == 2 and embeddings_matrix.shape[0] > 0 and embeddings_matrix.shape[1] > 0:
centroids[cluster_id] = np.mean(embeddings_matrix, axis=0)
return centroids
def _project_to_centroid_space(
original_embeddings_matrix: np.ndarray, # (n_items, n_original_features)
centroids_map: Dict[Any, np.ndarray] # {cluster_id: centroid_vector (n_original_features,)}
) -> np.ndarray:
"""Projects embeddings into a new space defined by cluster centroids using cosine similarity."""
if not centroids_map or original_embeddings_matrix.ndim != 2 or \
original_embeddings_matrix.shape[0] == 0 or original_embeddings_matrix.shape[1] == 0:
return np.empty((original_embeddings_matrix.shape[0], 0)) # (n_items, 0_new_features)
sorted_cluster_ids = sorted(centroids_map.keys())
valid_centroid_vectors = []
for cid in sorted_cluster_ids:
centroid_vec = centroids_map[cid]
if isinstance(centroid_vec, np.ndarray) and centroid_vec.ndim == 1 and \
centroid_vec.size == original_embeddings_matrix.shape[1]:
valid_centroid_vectors.append(centroid_vec)
if not valid_centroid_vectors:
return np.empty((original_embeddings_matrix.shape[0], 0))
centroid_matrix = np.vstack(valid_centroid_vectors) # (n_valid_centroids, n_original_features)
# Result: (n_items, n_valid_centroids)
projected_matrix = cosine_similarity(original_embeddings_matrix, centroid_matrix)
return projected_matrix
def _get_pairwise_cosine_distances(embeddings_matrix: np.ndarray) -> np.ndarray:
"""Calculates unique pairwise cosine distances from an embedding matrix."""
if not isinstance(embeddings_matrix, np.ndarray) or embeddings_matrix.ndim != 2 or \
embeddings_matrix.shape[0] < 2 or embeddings_matrix.shape[1] == 0:
return np.array([]) # Not enough samples or features
dist_matrix = cosine_distances(embeddings_matrix)
iu = np.triu_indices(dist_matrix.shape[0], k=1) # Upper triangle, excluding diagonal
return dist_matrix[iu]
def analyze_space_distance_preservation(
df: pd.DataFrame,
embedding_clm: str = 'style_embedding',
cluster_label_clm: str = 'cluster_label'
) -> float | None:
"""
Analyzes how well a new space, defined by cluster centroids, preserves
the cosine distance relationships from the original embedding space.
Args:
df (pd.DataFrame): DataFrame with original embeddings and cluster labels.
embedding_clm (str): Column name for original embeddings.
cluster_label_clm (str): Column name for cluster labels.
Returns:
float | None: Pearson correlation coefficient. Returns None if analysis
cannot be performed (e.g., <2 clusters, <2 items), or 0.0
if correlation is NaN (e.g. due to zero variance in distances).
"""
df_valid_items = df[df[cluster_label_clm] != -1].copy()
if df_valid_items.shape[0] < 2:
return None # Need at least 2 items for pairwise distances
original_embeddings_matrix = _safe_embeddings_to_matrix(df_valid_items[embedding_clm])
if original_embeddings_matrix.ndim != 2 or original_embeddings_matrix.shape[0] < 2 or \
original_embeddings_matrix.shape[1] == 0:
return None # Valid matrix from original embeddings could not be formed
centroids = _compute_cluster_centroids(df_valid_items, embedding_clm, cluster_label_clm)
if len(centroids) < 2: # Need at least 2 centroids for a multi-dimensional new space
return None
projected_embeddings_matrix = _project_to_centroid_space(original_embeddings_matrix, centroids)
if projected_embeddings_matrix.ndim != 2 or projected_embeddings_matrix.shape[0] < 2 or \
projected_embeddings_matrix.shape[1] < 2: # New space needs at least 2 dimensions (centroids)
return None
distances_original_space = _get_pairwise_cosine_distances(original_embeddings_matrix)
distances_new_space = _get_pairwise_cosine_distances(projected_embeddings_matrix)
if distances_original_space.size == 0 or distances_new_space.size == 0 or \
distances_original_space.size != distances_new_space.size:
return None # Mismatch or empty distances
# Handle cases where variance is zero in one of the distance arrays (leads to NaN correlation)
if np.all(distances_new_space == distances_new_space[0]) or \
np.all(distances_original_space == distances_original_space[0]):
return 0.0 # Correlation is undefined or 0 if one variable is constant
try:
correlation, _ = pearsonr(distances_original_space, distances_new_space)
except ValueError: # Should be caught by variance checks, but as a safeguard
return None
if np.isnan(correlation):
return 0.0 # Default for NaN correlation
return correlation