File size: 21,799 Bytes
3d73c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b15ed38
3d73c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import gradio as gr
import json
import numpy as np
from sklearn.manifold import TSNE
import pickle as pkl
import os
import hashlib
import pandas as pd
import plotly.graph_objects as go
from plotly.colors import sample_colorscale
from gradio import update
import re
from utils.interp_space_utils import compute_clusters_style_representation_3, compute_clusters_g2v_representation
from utils.llm_feat_utils import split_features
from utils.gram2vec_feat_utils import get_shorthand, get_fullform

import plotly.io as pio

def clean_text(text: str) -> str:
    """
    Cleans the text by replacing HTML tags with their escaped versions.
    """
    return text.replace('<','&lt;').replace('>','&gt;').replace('\n', '<br>')

def get_instances(instances_to_explain_path: str = 'datasets/instances_to_explain.json'):
    """
    Loads the JSON and returns:
      - instances_to_explain: the raw dict/list of instances
      - instance_ids: list of keys (if dict) or indices (if list)
    """
    instances_to_explain = json.load(open(instances_to_explain_path))
    if isinstance(instances_to_explain, dict):
        instance_ids = list(instances_to_explain.keys())
    else:
        instance_ids = list(range(len(instances_to_explain)))
    return instances_to_explain, instance_ids

def load_instance(instance_id, instances_to_explain: dict):
    """
    Given a selected instance_id and the loaded data,
    returns (mystery_html, c0_html, c1_html, c2_html).
    """
    # normalize instance_id
    try:
        iid = int(instance_id)
    except ValueError:
        iid = instance_id
    data = instances_to_explain[iid]

    predicted_author = data['latent_rank'][0]
    ground_truth_author = data['gt_idx']

    header_html = f"""
    <div style="border:1px solid #ccc; padding:10px; margin-bottom:10px;">
      <h3>Here’s the mystery passage alongside three candidate textsβ€”look for the green highlight to see the predicted author.</h3>
    </div>
    """
    mystery_text = clean_text(data['Q_fullText'])
    mystery_html = f"""
    <div style="
            border: 2px solid #ff5722;      /* accent border */
            background: #fff3e0;            /* very light matching wash */
            border-radius: 6px;
            padding: 1em;
            margin-bottom: 1em;
        ">
        <h3 style="margin-top:0; color:#bf360c;">Mystery Author</h3>
        <p>{clean_text(mystery_text)}</p>
    </div>
    """

    # Candidate boxes
    candidate_htmls = []
    for i in range(3):
        text = data[f'a{i}_fullText']
        title = f"Candidate {i+1}"
        extra_style = ""

        if ground_truth_author == i:
            if ground_truth_author != predicted_author: # highlight the true author only if its different than the predictd one
                title += " (True Author)"
                extra_style = (
                    "border: 2px solid #ff5722; "
                    "background: #fff3e0; " 
                    "padding:10px; "
                )

        
        if predicted_author == i:
            if predicted_author == ground_truth_author:
                title += " (Predicted and True Author)"
            else:
                title += " (Predicted Author)"
            extra_style = (
                "border:2px solid #228B22; "        # dark green border
                "background-color: #e6ffe6; "       # light green fill
                "padding:10px; "
            )
            

        candidate_htmls.append(f"""
        <div style="border:1px solid #ccc; padding:10px; {extra_style}">
          <h4>{title}</h4>
          <p>{clean_text(text)}</p>
        </div>
        """)

    return header_html, mystery_html, candidate_htmls[0], candidate_htmls[1], candidate_htmls[2]

def compute_tsne_with_cache(embeddings: np.ndarray, cache_path: str = 'datasets/tsne_cache.pkl') -> np.ndarray:
    """
    Compute t-SNE with caching to avoid recomputation for the same input.

    Args:
        embeddings (np.ndarray): The input embeddings to compute t-SNE on.
        cache_path (str): Path to the cache file.

    Returns:
        np.ndarray: The t-SNE transformed embeddings.
    """
    # Create a hash of the input embeddings to use as a key
    hash_key = hashlib.md5(embeddings.tobytes()).hexdigest()
    
    if os.path.exists(cache_path):
        with open(cache_path, 'rb') as f:
            cache = pkl.load(f)
    else:
        cache = {}

    if hash_key in cache:
        return cache[hash_key]
    else:
        print("Computing t-SNE")
        tsne_result = TSNE(n_components=2, learning_rate='auto',
                           init='random', perplexity=3).fit_transform(embeddings)
        cache[hash_key] = tsne_result
        with open(cache_path, 'wb') as f:
            pkl.dump(cache, f)
        return tsne_result  

def load_interp_space(cfg):
    interp_space_path      = cfg['interp_space_path'] + 'interpretable_space.pkl'
    interp_space_rep_path  = cfg['interp_space_path'] + 'interpretable_space_representations.json'
    gram2vec_feats_path    = cfg['interp_space_path'] + '/../gram2vec_feats.csv'
    clustered_authors_path = cfg['interp_space_path'] + 'train_authors.pkl'

    # Load authors embeddings and their cluster labels
    clustered_authors_df = pd.read_pickle(clustered_authors_path)
    clustered_authors_df = clustered_authors_df[clustered_authors_df.cluster_label != -1]
    author_embedding = clustered_authors_df.author_embedding.tolist()
    author_labels    = clustered_authors_df.cluster_label.tolist()
    author_ids      = clustered_authors_df.authorID.tolist()

    # filter out gram2vec features that doesn't have representation
    clustered_authors_df['gram2vec_feats'] = clustered_authors_df.gram2vec_feats.apply(lambda feats: [feat for feat in feats if get_shorthand(feat) is not None])
    
    # Load a list of gram2vec features --> we use it to distinguish the cluster representations whether they come from gram2vec or llms
    gram2vec_df = pd.read_csv(gram2vec_feats_path)
    gram2vec_feats = gram2vec_df.gram2vec_feats.unique().tolist()

    # Load interpretable space embeddings and the representation of each dimension
    interpretable_space = pkl.load(open(interp_space_path, 'rb'))
    del interpretable_space[-1] #DBSCAN generate a cluster -1 of all outliers. We don't want this cluster
    dimension_to_latent = {key: interpretable_space[key][0] for key in interpretable_space}

    interpretable_space_rep_df = pd.read_json(interp_space_rep_path)
    #dimension_to_style  = {x[0]: x[1] for x in zip(interpretable_space_rep_df.cluster_label.tolist(), interpretable_space_rep_df[style_feat_clm].tolist())}
    dimension_to_style  = {x[0]: [feat[0] for feat in sorted(x[1].items(), key=lambda feat_w:-feat_w[1])] for x in zip(interpretable_space_rep_df.cluster_label.tolist(), interpretable_space_rep_df[cfg['style_feat_clm']].tolist())}

    if cfg['only_llm_feats']:
        #print('only llm feats')
        dimension_to_style = {dim[0]:[feat for feat in dim[1] if feat not in gram2vec_feats] for dim in dimension_to_style.items()}

    if cfg['only_gram2vec_feats']:
        #print('only gra2vec feats')
        dimension_to_style = {dim[0]:[feat for feat in dim[1] if feat in gram2vec_feats] for dim in dimension_to_style.items()}

    # Take top features from g2v and llm
    def take_to_k_llm_and_g2v_feats(feats_list, top_k):
        g2v_feats = [x for x in feats_list if x in gram2vec_feats][:top_k]
        llm_feats = [x for x in feats_list if x not in gram2vec_feats][:top_k]
        return g2v_feats + llm_feats
    dimension_to_style = {dim[0]: take_to_k_llm_and_g2v_feats(dim[1], cfg['top_k']) for dim in dimension_to_style.items()}


    return {
        'dimension_to_latent': dimension_to_latent, 
        'dimension_to_style' : dimension_to_style, 
        'author_embedding' : author_embedding, 
        'author_labels' : author_labels,
        'author_ids' : author_ids,
        'clustered_authors_df' : clustered_authors_df

    }

#function to handle zoom events
def handle_zoom(event_json, bg_proj, bg_lbls, clustered_authors_df, task_authors_df):
    """
    event_json         – stringified JSON from JS listener
    bg_proj            – (N,2) numpy array with 2D coordinates
    bg_lbls            – list of N author IDs
    clustered_authors_df – pd.DataFrame containing authorID and final_attribute_name
    """
    print("[INFO] Handling zoom event")

    if not event_json:
        return gr.update(value=""), gr.update(value=""), None, None, None

    try:
        ranges = json.loads(event_json)
        (x_min, x_max) = ranges["xaxis"]
        (y_min, y_max) = ranges["yaxis"]
    except (json.JSONDecodeError, KeyError, ValueError):
        return gr.update(value=""), gr.update(value=""), None, None, None

    # Find points within the zoomed region
    mask = (
        (bg_proj[:, 0] >= x_min) & (bg_proj[:, 0] <= x_max) &
        (bg_proj[:, 1] >= y_min) & (bg_proj[:, 1] <= y_max)
    )

    visible_authors = [lbl for lbl, keep in zip(bg_lbls, mask) if keep]

    print(f"[INFO] Zoomed region includes {len(visible_authors)} authors:{visible_authors}")

    # Example: Find features for clusters [2,3,4] that are NOT prominent in cluster [1]
    # llm_feats = compute_clusters_style_representation(
    #     background_corpus_df=clustered_authors_df,
    #     cluster_ids=visible_authors,
    #     cluster_label_clm_name='authorID',
    #     other_cluster_ids=[],
    #     features_clm_name='final_attribute_name_manually_processed'
    # )
    print(f"Task authors: {len(task_authors_df)}, Clustered authors: {len(clustered_authors_df)}")
    merged_authors_df = pd.concat([task_authors_df, clustered_authors_df])
    print(f"Merged authors DataFrame:\n{len(merged_authors_df)}")
    style_analysis_response = compute_clusters_style_representation_3(
        background_corpus_df=merged_authors_df,
        cluster_ids=visible_authors,
        cluster_label_clm_name='authorID',
    )

    llm_feats = ['None'] + style_analysis_response['features']


    merged_authors_df = pd.concat([task_authors_df, clustered_authors_df])
    g2v_feats = compute_clusters_g2v_representation(
        background_corpus_df=merged_authors_df,
        author_ids=visible_authors,
        other_author_ids=[],
        features_clm_name='g2v_vector'
    )

    # Gram2vec features are already in shorthand. convert to human readable for display
    HR_g2v_list = []
    for feat in g2v_feats:
        HR_g2v = get_fullform(feat)
        print(f"\n\n feat: {feat} ---> Human Readable: {HR_g2v}")
        if HR_g2v is None:
            print(f"Skipping Gram2Vec feature without human readable form: {feat}")
        else:
            HR_g2v_list.append(HR_g2v)

    HR_g2v_list = ["None"] + HR_g2v_list

    print(f"[INFO] Found {len(llm_feats)} LLM features and {len(g2v_feats)} Gram2Vec features in the zoomed region.")   
    print(f"[INFO] unfiltered g2v features: {g2v_feats}")

    print(f"[INFO] LLM features: {llm_feats}")
    print(f"[INFO] Gram2Vec features: {HR_g2v_list}")

    return (
        gr.update(choices=llm_feats, value=llm_feats[0]),
        gr.update(choices=HR_g2v_list, value=HR_g2v_list[0]),
        style_analysis_response,
        llm_feats,
        visible_authors
    )
    # return gr.update(value="\n".join(llm_feats).join("\n").join(g2v_feats)), llm_feats, g2v_feats

def handle_zoom_with_retries(event_json, bg_proj, bg_lbls, clustered_authors_df, task_authors_df):
    """
    event_json         – stringified JSON from JS listener
    bg_proj            – (N,2) numpy array with 2D coordinates
    bg_lbls            – list of N author IDs
    clustered_authors_df – pd.DataFrame containing authorID and final_attribute_name
    task_authors_df   – pd.DataFrame containing authorID and final_attribute_name
    """
    print("[INFO] Handling zoom event with retries")

    for attempt in range(3):
        try:
            return handle_zoom(event_json, bg_proj, bg_lbls, clustered_authors_df, task_authors_df)
        except Exception as e:
            print(f"[ERROR] Attempt {attempt + 1} failed: {e}")
            if attempt < 2:
                print("[INFO] Retrying...")
    return (
        None,
        None,
        None,
        None,
        None
    )


def visualize_clusters_plotly(iid, cfg, instances, model_radio, custom_model_input, task_authors_df, background_authors_embeddings_df, pred_idx=None, gt_idx=None):
    model_name = model_radio if model_radio != "Other" else custom_model_input
    embedding_col_name = f'{model_name.split("/")[-1]}_style_embedding'
    print(background_authors_embeddings_df.columns)
    print("Generating cluster visualization")
    iid = int(iid)
    interp      = load_interp_space(cfg)
    # dim2lat     = interp['dimension_to_latent']
    style_names = interp['dimension_to_style']
    # bg_emb      = np.array(interp['author_embedding'])
    # print(f"bg_emb shape: {bg_emb.shape}")
    #replace with cached embedddings
    bg_emb      = np.array(background_authors_embeddings_df[embedding_col_name].tolist()) #placeholder for background embeddings
    print(f"bg_emb shape: {bg_emb.shape}")
    # print("interp.keys():", interp.keys())
    #bg_lbls     = interp['author_labels']
    #bg_ids      = interp['author_ids']
    bg_ids = task_authors_df['authorID'].tolist() + background_authors_embeddings_df['authorID'].tolist()
    # inst         = instances[iid]
    # print("inst.keys():", inst.keys())
    # q_lat        = np.array(inst['author_latents'][:1])
    # print(f"q_lat shape: {q_lat.shape}")
    # c_lat        = np.array(inst['author_latents'][1:])
    # print(f"c_lat shape: {c_lat.shape}")
    # pred_idx     = inst['latent_rank'][0]
    # gt_idx       = inst['gt_idx']
    q_lat = np.array(task_authors_df[embedding_col_name].iloc[0]).reshape(1, -1) # Mystery author latent
    print(f"q_lat shape: {q_lat.shape}")
    c_lat = np.array(task_authors_df[embedding_col_name].iloc[1:].tolist())  # Candidate authors latents
    print(f"c_lat shape: {c_lat.shape}")

    # cent_emb = np.array([v for _,v in dim2lat.items()])
    # cent_lbl = np.array([k for k,_ in dim2lat.items()])

    # all_emb = np.vstack([q_lat, c_lat, bg_emb, cent_emb])
    all_emb = np.vstack([q_lat, c_lat, bg_emb])
    proj    = compute_tsne_with_cache(all_emb)

    # split
    q_proj    = proj[0]
    c_proj    = proj[1:4]
    #bg_proj   = proj[4:4+len(bg_lbls)]
    bg_proj   = proj

    # cent_proj = proj[4+len(bg_lbls):]


    # find nearest centroid
    # dists = np.linalg.norm(cent_proj - q_proj, axis=1)
    # idx   = int(np.argmin(dists))
    # cluster_label_query = cent_lbl[idx]
    # features of the nearest centroid to display
    # feature_list = style_names[cluster_label_query]

    # cluster_labels_per_candidate = [
    #     cent_lbl[int(np.argmin(np.linalg.norm(cent_proj - c_proj[i], axis=1)))]
    #     for i in range(c_proj.shape[0])
    # ]

    # prepare colorscale
    # n_cent = len(cent_lbl)
    # cent_colors = sample_colorscale("algae", [i/(n_cent-1) for i in range(n_cent)])
    # map each cluster label to its color
    # color_map = { label: cent_colors[i] for i, label in enumerate(cent_lbl) }

    # uncomment the following line to show background authors
    ## background author colors pulled from their cluster label
    # bg_colors = [ color_map[label] for label in bg_lbls ]

    # 2) build Plotly figure
    fig = go.Figure()

    fig.update_layout(
        template='plotly_white',
        margin=dict(l=40,r=40,t=60,b=40),
        autosize=True,
        hovermode='closest',
        # Enable zoom events
        dragmode='zoom'  
    )
    
    # fig.update_layout(
    #     template='plotly_white',
    #     margin=dict(l=40,r=40,t=60,b=40),
    #     autosize=True,
    #     hovermode='closest')


    # uncomment the following line to show background authors
    ## background authors (light grey dots)
    fig.add_trace(go.Scattergl(
        x=bg_proj[:,0], y=bg_proj[:,1],
        mode='markers',
        marker=dict(size=6, color="#d3d3d3"),# color=bg_colors
        name='Background authors',
        hoverinfo='skip'
    ))

    # centroids (rainbow colors + hovertext of your top-k features)
    # hover_texts = [
    #     f"Cluster {lbl}<br>" + "<br>".join(style_names[lbl])
    #     for lbl in cent_lbl
    # ]
    # fig.add_trace(go.Scattergl(
    #     x=cent_proj[:,0], y=cent_proj[:,1],
    #     mode='markers',
    #     marker=dict(symbol='triangle-up', size=10, color="#d3d3d3"),#color=cent_colors
    #     name='Cluster centroids',
    #     hovertext=hover_texts,
    #     hoverinfo='text'
    # ))

    # three candidates
    marker_syms = ['diamond','pentagon','x']
    for i in range(3):
        # label = f"Candidate {i+1}" + (" (predicted)" if i==pred_idx else "")
        base = f"Candidate {i+1}"
        # pick the right suffix
        if i == pred_idx and i == gt_idx:
            suffix = " (Predicted & Ground Truth)"
        elif i == pred_idx:
            suffix = " (Predicted)"
        elif i == gt_idx:
            suffix = "(Ground Truth)"
        else:
            suffix = ""

        label = base + suffix
        fig.add_trace(go.Scattergl(
            x=[c_proj[i,0]], y=[c_proj[i,1]],
            mode='markers',
            marker=dict(symbol=marker_syms[i], size=12, color='darkblue'),
            name=label,
            hoverinfo='skip'
        ))

    # query author
    fig.add_trace(go.Scattergl(
        x=[q_proj[0]], y=[q_proj[1]],
        mode='markers',
        marker=dict(symbol='star', size=14, color='red'),
        name='Mystery author',
        hoverinfo='skip'
    ))

    # ── Arrowed annotations for mystery + candidates ──────────────────────────
    # Mystery author (red star)
    fig.add_annotation(
        x=q_proj[0], y=q_proj[1],
        xref='x', yref='y',
        text="Mystery",
        showarrow=True,
        arrowhead=2,
        arrowsize=1,
        arrowwidth=1.5,
        ax=40,   # tail offset in pixels: moves the label 40px to the right
        ay=-40,  # moves the label 40px up
        font=dict(color='red', size=12)
    )

    # Candidate authors (dark blue β—†)
    offsets = [(-40, -30), (40, -30), (0, 40)]  # [(ax,ay) for Cand1, Cand2, Cand3]
    for i in range(3):
        # build the right label
        if i == pred_idx and i == gt_idx:
            label = f"Candidate {i+1} (Predicted & Ground Truth)"
        elif i == pred_idx:
            label = f"Candidate {i+1} (Predicted)"
        elif i == gt_idx:
            label = f"Candidate {i+1} (Ground Truth)"
        else:
            label = f"Candidate {i+1}"

        fig.add_annotation(
            x=c_proj[i,0], y=c_proj[i,1],
            xref='x', yref='y',
            text= label,
            showarrow=True,
            arrowhead=2,
            arrowsize=1,
            arrowwidth=1.5,
            ax=offsets[i][0],
            ay=offsets[i][1],
            font=dict(color='darkblue', size=12)
        )

    print('Done processing....')
    # Prepare outputs for the new cluster‐dropdown UI
    # all_clusters = sorted(style_names.keys())
    # --- build display names for the dropdown ---
    # sorted_labels = sorted([int(lbl) for lbl in cent_lbl])
    # display_clusters = []
    # for lbl in sorted_labels:
    #     name = f"Cluster {lbl}"
    #     if lbl == cluster_label_query:
    #         name += " (closest to mystery author)"
    #     matching_indices = [i + 1 for i, val in enumerate(cluster_labels_per_candidate) if int(val) == lbl]
    #     if matching_indices:
    #         if len(matching_indices) == 1:
    #             name += f" (closest to Candidate {matching_indices[0]} author)"
    #         else:
    #             candidate_str = ", ".join(f"Candidate {i}" for i in matching_indices)
    #             name += f" (closest to {candidate_str} authors)"
    #     display_clusters.append(name)
    # print(f"All clusters: {all_clusters}")
    # return: figure, dropdown payload, full style_map
    return (
      fig,
    #   update(choices=display_clusters, value=display_clusters[cluster_label_query]),
      style_names, 
      bg_proj,  # Return background points
      bg_ids,    # Return background labels
      background_authors_embeddings_df,  # Return the DataFrame for zoom handling

    )
    # return fig, update(choices=feature_list, value=feature_list[0]),feature_list


def extract_cluster_key(display_label: str) -> int:
    """
    Given a dropdown label like
      "Cluster 5 (closest to mystery author; closest to Candidate 1 author)"
    returns the integer 5.
    """
    m = re.match(r"Cluster\s+(\d+)", display_label)
    if not m:
        raise ValueError(f"Unrecognized cluster label: {display_label}")
    return int(m.group(1))



# When a cluster is selected, split features and populate radio buttons
def on_cluster_change(selected_cluster, style_map):
    cluster_key = extract_cluster_key(selected_cluster)
    all_feats = style_map[cluster_key]
    llm_feats, g2v_feats = split_features(all_feats)
    # print(f"Selected cluster: {selected_cluster} ({cluster_key})")
    # print(f"LLM features: {llm_feats}")

    # Add "None" as a default selectable option
    llm_feats = ["None"] + llm_feats

    # filter out any g2v feature without a shorthand
    filtered_g2v = []
    for feat in g2v_feats:
        if get_shorthand(feat) is None:
            print(f"Skipping Gram2Vec feature without shorthand: {feat}")
        else:
            filtered_g2v.append(feat)
    
    # Add "None" as a default selectable option
    filtered_g2v = ["None"] + filtered_g2v

    return (
        gr.update(choices=llm_feats, value=llm_feats[0]),
        gr.update(choices=filtered_g2v, value=filtered_g2v[0]),
        llm_feats
    )