File size: 11,449 Bytes
3d73c8d ac7facf 3d73c8d ac7facf 3d73c8d ac7facf 3d73c8d ac7facf 3d73c8d ac7facf 3d73c8d ac7facf 3d73c8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import re
import html
from collections import namedtuple
from gram2vec.feature_locator import find_feature_spans
from functools import lru_cache
from utils.llm_feat_utils import generate_feature_spans_cached
import pandas as pd
Span = namedtuple('Span', ['start_char', 'end_char'])
from gram2vec import vectorizer
# ββ the FEATURE_HANDLERS & loader ββββββββββββ
FEATURE_HANDLERS = {
"Part-of-Speech Unigram": "pos_unigrams",
"Part-of-Speech Bigram": "pos_bigrams",
"Function Word": "func_words",
"Punctuation": "punctuation",
"Letter": "letters",
"Dependency Label": "dep_labels",
"Morphology Tag": "morph_tags",
"Sentence Type": "sentences",
"Emoji": "emojis",
"Number of Tokens": "num_tokens"
}
@lru_cache(maxsize=1)
def load_code_map(txt_path: str = "utils/augmented_human_readable.txt") -> dict:
code_map = {}
with open(txt_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
human, code = [p.strip() for p in line.split(":", 1)]
code_map[human] = code
return code_map
def get_shorthand(feature_str: str) -> str:
"""
Expects 'Category:Human-Readable', returns e.g. 'pos_unigrams:ADJ' or None.
"""
try:
category, human = [p.strip() for p in feature_str.split(":", 1)]
# print(f"Category: {category}, Human: {human}")
except ValueError:
# print("Invalid format for feature string:", feature_str)
return None
if category not in FEATURE_HANDLERS:
return None
code = load_code_map().get(human)
if code is None:
# print(f"Warning: No code found for human-readable feature '{human}'")
return None # fallback to the human-readable name
return f"{FEATURE_HANDLERS[category]}:{code}"
def get_fullform(shorthand: str) -> str:
"""
Expects 'prefix:code' (e.g., 'pos_unigrams:ADJ'), returns 'Category:Human-Readable'
(e.g., 'Part-of-Speech Unigram:Adjective'), or None if invalid.
"""
try:
prefix, code = shorthand.split(":", 1)
except ValueError:
return None
# Reverse FEATURE_HANDLERS
reverse_handlers = {v: k for k, v in FEATURE_HANDLERS.items()}
category = reverse_handlers.get(prefix)
if category is None:
return None
# Reverse code map
code_map = load_code_map()
reverse_code_map = {v: k for k, v in code_map.items()}
human = reverse_code_map.get(code)
if human is None:
return None
return f"{category}:{human}"
def highlight_both_spans(text, llm_spans, gram_spans):
"""
Walk the original `text` once, injecting <mark> tags at the correct offsets,
so that nested or overlapping highlights never stomp on each other.
"""
# Inline CSS : mark-llm is in yellow, mark-gram in blue
style = """
<style>
.mark-llm { background-color: #fff176; }
.mark-gram { background-color: #90caf9; }
</style>
"""
# Turn each span into two βeventsβ: open and close
events = []
for s in llm_spans:
events.append((s.start_char, 'open', 'llm'))
events.append((s.end_char, 'close', 'llm'))
for s in gram_spans:
events.append((s.start_char, 'open', 'gram'))
events.append((s.end_char, 'close', 'gram'))
# Sort by position;
events.sort(key=lambda e: (e[0], 0 if e[1]=='open' else 1))
out = []
last_idx = 0
for idx, typ, cls in events:
# escape the slice between last index and this event
out.append(html.escape(text[last_idx:idx]))
if typ == 'open':
out.append(f'<mark class="mark-{cls}">')
else:
out.append('</mark>')
last_idx = idx
out.append(html.escape(text[last_idx:]))
highlighted = "".join(out)
highlighted = highlighted.replace('\n', '<br>')
return style + highlighted
def show_combined_spans_all(selected_feature_llm, selected_feature_g2v,
llm_style_feats_analysis, background_authors_embeddings_df, task_authors_embeddings_df, visible_authors, predicted_author=None, ground_truth_author=None, max_num_authors=4):
"""
For mystery + 3 candidates:
1. get llm spans via your existing cache+API
2. get gram2vec spans via find_feature_spans
3. merge and highlight both
"""
print(f"\n\n\n\n\nShowing combined spans for LLM feature '{selected_feature_llm}' and Gram2Vec feature '{selected_feature_g2v}'")
print(f"predicted_author: {predicted_author}, ground_truth_author: {ground_truth_author}")
print(f" keys = {background_authors_embeddings_df.keys()}")
# background_and_task_authors = pd.concat([task_authors_embeddings_df, background_authors_embeddings_df])
# background_and_task_authors = background_and_task_authors[background_and_task_authors.authorID.isin(visible_authors)]
#get the visible background authors
background_authors_embeddings_df = background_authors_embeddings_df[background_authors_embeddings_df.authorID.isin(visible_authors)]
background_and_task_authors = pd.concat([task_authors_embeddings_df, background_authors_embeddings_df])
authors_texts = ['\n\n =========== \n\n'.join(x) if type(x) == list else x for x in background_and_task_authors[:max_num_authors]['fullText'].tolist()]
authors_names = background_and_task_authors[:max_num_authors]['authorID'].tolist()
print(f"Number of authors to show: {len(authors_texts)}")
print(f"Authors names: {authors_names}")
texts = list(zip(authors_names, authors_texts))
if selected_feature_llm and selected_feature_llm != "None":
# print(llm_style_feats_analysis)
author_list = list(llm_style_feats_analysis['spans'].values())
llm_spans_list = []
for i, (_, txt) in enumerate(texts):
author_spans_list = []
for txt_span in author_list[i][selected_feature_llm]:
author_spans_list.append(Span(txt.find(txt_span), txt.find(txt_span) + len(txt_span)))
llm_spans_list.append(author_spans_list)
else:
print("Skipping LLM span extraction: feature is None")
llm_spans_list = [[] for _ in texts]
if selected_feature_g2v and selected_feature_g2v != "None":
# get gram2vec spans
gram_spans_list = []
print(f"Selected Gram2Vec feature: {selected_feature_g2v}")
short = get_shorthand(selected_feature_g2v)
print(f"short hand: {short}")
for role, txt in texts:
try:
print(f"Finding spans for {short} {role}")
spans = find_feature_spans(txt, short)
# spans = [Span(fs.start_char, fs.end_char) for fs in raw_spans]
except:
print(f"Error finding spans for {short} {role}")
spans = []
gram_spans_list.append(spans)
else:
print("Skipping Gram2Vec span extraction: feature is None")
gram_spans_list = [[] for _ in texts]
# build HTML blocks
print(f" ----> Number of authors: {len(texts)}")
html_task_authors = create_html(
texts[:4], #first 4 are task
llm_spans_list,
gram_spans_list,
selected_feature_llm,
selected_feature_g2v,
short,
background = False,
predicted_author=predicted_author,
ground_truth_author=ground_truth_author
)
combined_html = "<div>" + "\n<hr>\n".join(html_task_authors) + "</div>"
html_background_authors = create_html(
texts[4:], #last three are background
llm_spans_list,
gram_spans_list,
selected_feature_llm,
selected_feature_g2v,
short,
background = True,
predicted_author=predicted_author,
ground_truth_author=ground_truth_author
)
background_html = "<div>" + "\n<hr>\n".join(html_background_authors) + "</div>"
return combined_html, background_html
def get_label(label: str, predicted_author=None, ground_truth_author=None, bg_id: int=0) -> str:
"""
Returns a human-readable label for the author.
"""
print(f"get_label called with label: {label}, predicted_author: {predicted_author}, ground_truth_author: {ground_truth_author}, bg_id: {bg_id}")
if label.startswith("Mystery") or label.startswith("Q_author"):
return "Mystery Author"
elif label.startswith("a0_author") or label.startswith("a1_author") or label.startswith("a2_author") or label.startswith("Candidate"):
if label.startswith("Candidate"):
id = int(label.split(" ")[2]) # Get the number after 'Candidate Author'
else:
id = label.split("_")[0][-1] # Get the last character of the first part (a0, a1, a2)
if predicted_author is not None and ground_truth_author is not None:
if int(id) == predicted_author and int(id) == ground_truth_author:
return f"Candidate {int(id)} (Predicted & Ground Truth)"
elif int(id) == predicted_author:
return f"Candidate {int(id)} (Predicted)"
elif int(id) == ground_truth_author:
return f"Candidate {int(id)} (Ground Truth)"
else:
return f"Candidate {int(id)}"
else:
return f"Candidate {int(id)}"
else:
return f"Background Author {bg_id+1}"
def create_html(texts, llm_spans_list, gram_spans_list, selected_feature_llm, selected_feature_g2v, short=None, background = False, predicted_author=None, ground_truth_author=None):
html = []
for i, (label, txt) in enumerate(texts):
label = get_label(label, predicted_author, ground_truth_author, i) if background else get_label(label, predicted_author, ground_truth_author)
combined = highlight_both_spans(txt, llm_spans_list[i], gram_spans_list[i])
notice = ""
if selected_feature_llm == "None":
notice += f"""
<div style="padding:8px; background:#eee; border:1px solid #aaa;">
<em>No LLM feature selected.</em>
</div>
"""
elif not llm_spans_list[i]:
notice += f"""
<div style="padding:8px; background:#fee; border:1px solid #f00;">
<em>No spans found for LLM feature "{selected_feature_llm}".</em>
</div>
"""
if selected_feature_g2v == "None":
notice += f"""
<div style="padding:8px; background:#eee; border:1px solid #aaa;">
<em>No Gram2Vec feature selected.</em>
</div>
"""
elif not short:
notice += f"""
<div style="padding:8px; background:#fee; border:1px solid #f00;">
<em>Invalid or unmapped feature: "{selected_feature_g2v}".</em>
</div>
"""
elif not gram_spans_list[i]:
notice += f"""
<div style="padding:8px; background:#fee; border:1px solid #f00;">
<em>No spans found for Gram2Vec feature "{selected_feature_g2v}".</em>
</div>
"""
html.append(f"""
<h3>{label}</h3>
{notice}
<div style="border:1px solid #ccc; padding:8px; margin-bottom:1em;">
{combined}
</div>
""")
return html |