File size: 25,137 Bytes
3d73c8d ac7facf 3d73c8d 410e0af e392716 410e0af e392716 410e0af e392716 3d73c8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import gradio as gr
import json
import os
os.environ["GRADIO_TEMP_DIR"] = "./datasets/temp" # Set a custom temp directory for Gradio
os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True)
import yaml
import argparse
import os
import urllib.request
from tqdm import tqdm
from dotenv import load_dotenv
from openai import OpenAI
from utils.file_download import download_file_override
def load_config(path="config/config.yaml"):
with open(path, "r") as f:
return yaml.safe_load(f)
cfg = load_config()
download_file_override(cfg.get('interp_space_url'), cfg.get('interp_space_path'))
download_file_override(cfg.get('instances_to_explain_url'), cfg.get('instances_to_explain_path'))
download_file_override(cfg.get('gram2vec_feats_url'), cfg.get('gram2vec_feats_path'))
from utils.visualizations import *
from utils.llm_feat_utils import *
from utils.gram2vec_feat_utils import *
from utils.interp_space_utils import *
from utils.ui import *
load_dotenv()
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# ββ load once at startup ββββββββββββββββββββββββββββββββββββββββ
GRAM2VEC_SHORTHAND = load_code_map()
def validate_ground_truth(gt1, gt2, gt3):
selected = [gt1, gt2, gt3]
selected_count = sum(selected)
if selected_count > 1:
return None, "Please select only one ground truth author."
elif selected_count == 0:
return None, "No ground truth author selected."
index = selected.index(True)
return index, f"Candidate {index+1} is marked as the ground truth author."
def app(share=False, use_cluster_feats=False):
instances, instance_ids = get_instances(cfg['instances_to_explain_path'])
interp = load_interp_space(cfg)
clustered_authors_df = interp['clustered_authors_df'][:500]
clustered_authors_df['fullText'] = clustered_authors_df['fullText'].map(lambda l: l[:3]) # Take at most 3 texts per author
with gr.Blocks(title="Author Attribution Explainability Tool") as demo:
# ββ Big Centered Title ββββββββββββββββββββββββββββββββββββββββββ
gr.HTML(styled_block("""
<h1 style="
text-align:center;
font-size:3em; /* About 48px */
margin-bottom:0.3em;
font-weight:700;
">
Author Attribution (AA) Explainability Tool
</h1>
"""))
gr.HTML(styled_block("""
<div style="
text-align:center;
margin: 1em auto 2em auto;
max-width:900px;
">
<p style="font-size:1.3em; line-height:1.4;">
This demo helps you <strong>see inside</strong> a deep AA modelβs latent style space.
</p>
<p style="font-size:0.9em; line-height:1.4;">
Currently you are inspecting <a href="https://huggingface.co/rrivera1849/LUAR-MUD">LUAR</a> with pre-defined AA tasks from the <a href="https://www.iarpa.gov/images/research-programs/HIATUS/IARPA_HIATUS_Phase_1_HRS_Data.to_DAC_20240610.pdf">HRS dataset </a>
</p>
<div style="
display:flex;
justify-content:center;
gap:3em;
margin-top:1em;
">
<!-- Visualize -->
<div style="max-width:200px;">
<div style="font-size:2em;">π</div>
<h4 style="margin:0.2em 0;">Visualize</h4>
<p style="margin:0; font-size:1em; line-height:1.3;">
Place your AA task with respect to other background authors.
</p>
</div>
<!-- GENERATE -->
<div style="max-width:200px;">
<div style="font-size:2em;">βοΈ</div>
<h4 style="margin:0.2em 0;">Generate</h4>
<p style="margin:0; font-size:1em; line-height:1.3;">
Describe your investigated authors' writing style via human-readable LLM-generated style features.
</p>
</div>
<!-- COMPARE -->
<div style="max-width:200px;">
<div style="font-size:2em;">βοΈ</div>
<h4 style="margin:0.2em 0;">Compare</h4>
<p style="margin:0; font-size:1em; line-height:1.3;">
Contrast with <a href=""https://github.com/eric-sclafani/gram2vec>Gram2Vec</a> stylometric features.
</p>
</div>
</div>
</div>
"""))
# ββ Step-by-Step Guided Panel ββ
with gr.Accordion("π How to Use", open=True):
gr.Markdown("""
1. **Select** a model and a task source (pre-defined or custom)
2. Click **Load Task & Generate Embeddings** to load the task and generate embeddings
3. **Run Visualization** to see the mystery author and candidates in the AA model's latent space
4. **Zoom** into the visualization to select a cluster of background authors
5. Pick an **LLM feature** to highlight in yellow
6. Pick a **Gram2Vec feature** to highlight in blue
7. Click **Show Combined Spans** to compare side-by-side
"""
)
# ββ Model Selection βββββββββββββββββββββββββββββββββ
model_radio = gr.Radio(
choices=[
'gabrielloiseau/LUAR-MUD-sentence-transformers',
'gabrielloiseau/LUAR-CRUD-sentence-transformers',
'miladalsh/light-luar',
'AnnaWegmann/Style-Embedding',
'Other'
],
value='gabrielloiseau/LUAR-MUD-sentence-transformers',
label='Choose a Model to inspect'
)
print(f"Model choices: {model_radio.choices}")
print(f"Model default: {model_radio.value}")
custom_model = gr.Textbox(
label='Custom Model ID',
placeholder='Enter your Hugging Face Model ID here',
visible=False,
interactive=True
)
# Show the textbox when 'Other' is selected
model_radio.change(
fn=toggle_custom_model,
inputs=[model_radio],
outputs=[custom_model]
)
# ββ Task Source Selection βββββββββββββββββββββββββββββββββ
task_mode = gr.Radio(
choices=["Predefined HRS Task", "Upload Your Own Task"],
value="Predefined HRS Task",
label="Select Task Source"
)
ground_truth_author = gr.State() # To store the index of the ground truth author
with gr.Column():
with gr.Column(visible=True) as predefined_container:
gr.HTML("""
<div style="
font-size: 1.3em;
font-weight: 600;
margin-bottom: 0.5em;
">
Pick a pre-defined task to investigate (a mystery text and its three candidate authors)
</div>
""")
task_dropdown = gr.Dropdown(
choices=[f"Task {i}" for i in instance_ids],
value=f"Task {instance_ids[0]}",
label="Choose which mystery document to explain",
)
with gr.Column(visible=False) as custom_container:
gr.HTML("""
<div style="
font-size: 1.3em;
font-weight: 600;
margin-bottom: 0.5em;
">
Upload your own task
</div>
""")
mystery_input = gr.File(label="Mystery (.txt)", file_types=['.txt'])
with gr.Row():
candidate1 = gr.File(label="Candidate 1 (.txt)", file_types=['.txt'])
gt1_checkbox = gr.Checkbox(label="Ground Truth?", value=False)
with gr.Row():
candidate2 = gr.File(label="Candidate 2 (.txt)", file_types=['.txt'])
gt2_checkbox = gr.Checkbox(label="Ground Truth?", value=False)
with gr.Row():
candidate3 = gr.File(label="Candidate 3 (.txt)", file_types=['.txt'])
gt3_checkbox = gr.Checkbox(label="Ground Truth?", value=False)
validation_msg = gr.Textbox(label="Validation Result", interactive=False)
for checkbox in [gt1_checkbox, gt2_checkbox, gt3_checkbox]:
checkbox.change(
fn=validate_ground_truth,
inputs=[gt1_checkbox, gt2_checkbox, gt3_checkbox],
outputs=[ground_truth_author, validation_msg]
)
# ββ Load Task Button βββββββββββββββββββββββββββββββββββββ
gr.HTML(instruction_callout("Click the button below to load the tasks and generate embeddings using selected model."))
load_button = gr.Button("Load Task & Generate Embeddings")
# ββ HTML outputs for author texts βββββββββββββββββββββββββββ
default_outputs = load_instance(0, instances)
#dont need defaults since they are loaded only on click of the load button
header = gr.HTML()
mystery = gr.HTML()
mystery_state = gr.State() # Store unformatted mystery text for later use
with gr.Row():
c0 = gr.HTML()
c1 = gr.HTML()
c2 = gr.HTML()
c0_state = gr.State() # Store unformatted candidate 1 text for later use
c1_state = gr.State() # Store unformatted candidate 2 text for later use
c2_state = gr.State() # Store unformatted candidate 3 text for later use
# ββ State to hold embeddings DataFrame βββββββββββββββββββββ
task_authors_embeddings_df = gr.State() # Store embeddings of task authors
background_authors_embeddings_df = gr.State() # Store background authors DataFrame
task_mode.change(
fn=toggle_task,
inputs=[task_mode],
outputs=[predefined_container, custom_container]
)
# ββ Wire call to load task and generate embeddings once load button is clicked βββββββββββββββββββ
predicted_author = gr.State() # Store predicted author from the embeddings
load_button.click(
fn=lambda: gr.update(value="β³ Loading... Please wait", interactive=False),
inputs=[],
outputs=[load_button]
).then(
fn=lambda mode, dropdown, mystery, c1, c2, c3, ground_truth_author, model_radio, custom_model_input:
update_task_display(
mode,
dropdown,
instances, # closed over
clustered_authors_df,
mystery,
c1,
c2,
c3,
ground_truth_author, # true_author placeholder
model_radio,
custom_model_input
),
inputs=[task_mode, task_dropdown, mystery_input, candidate1, candidate2, candidate3, ground_truth_author, model_radio, custom_model],
outputs=[header, mystery, c0, c1, c2, mystery_state, c0_state, c1_state, c2_state, task_authors_embeddings_df, background_authors_embeddings_df, predicted_author, ground_truth_author] # embeddings_df is a placeholder for now
).then(
fn=lambda: gr.update(value="Load Task & Generate Embeddings", interactive=True),
inputs=[],
outputs=[load_button]
)
# ββ Visualization for features βββββββββββββββββββββββββββββ
gr.HTML(instruction_callout("Run visualization to see which author is similar to the mystery document."))
run_btn = gr.Button("Run visualization")
bg_proj_state = gr.State()
bg_lbls_state = gr.State()
bg_authors_df = gr.State() # Holds the background authors DataFrame
with gr.Row():
with gr.Column(scale=3):
# axis_ranges = gr.Textbox(visible=False, elem_id="axis-ranges")
axis_ranges = gr.Textbox(
visible=True, # Keep it visible to DOM
elem_id="axis-ranges",
interactive=True,
show_label=False,
container=False,
value="",
elem_classes=["hidden-textbox"] # Add custom CSS class
)
# Add this CSS to hide it visually
gr.HTML("""
<style>
.hidden-textbox {
position: absolute !important;
left: -9999px !important;
width: 1px !important;
height: 1px !important;
opacity: 0 !important;
pointer-events: none !important;
}
</style>
""")
plot = gr.Plot(
label="Visualization",
elem_id="feature-plot",
)
plot.change(
fn=None,
inputs=[plot],
outputs=[axis_ranges],
js="""
function(){
console.log("------------>[JS] plot.change() triggered<------------");
let attempts = 0;
const maxAttempts = 50;
const tryAttach = () => {
const gd = document.querySelector('#feature-plot .js-plotly-plot');
if (!gd) {
if (++attempts < maxAttempts) {
requestAnimationFrame(tryAttach);
} else {
console.error(" ------------>Could not find .js-plotly-plot after multiple attempts.<------------");
}
return;
}
if (gd.__zoomListenerAttached) {
console.log("------------>Zoom listener already attached.<------------");
return;
}
gd.__zoomListenerAttached = true;
console.log("------------>Zoom listener attached!<------------");
gd.on('plotly_relayout', (ev) => {
if (
ev['xaxis.range[0]'] === undefined ||
ev['xaxis.range[1]'] === undefined ||
ev['yaxis.range[0]'] === undefined ||
ev['yaxis.range[1]'] === undefined
) return;
const payload = {
xaxis: [ev['xaxis.range[0]'], ev['xaxis.range[1]']],
yaxis: [ev['yaxis.range[0]'], ev['yaxis.range[1]']]
};
const txtbox = document.querySelector('#axis-ranges textarea');
if (txtbox) {
txtbox.value = JSON.stringify(payload);
txtbox.dispatchEvent(new Event('input', { bubbles: true }));
console.log("------------> Zoom payload dispatched:<------------", payload);
} else {
console.warn("------------> No hidden textbox found to write zoom payload.<------------");
}
});
};
requestAnimationFrame(tryAttach);
return '';
}
"""
)
with gr.Column(scale=1):
expl_html = """
<h4>What am I looking at?</h4>
<p>
This plot shows the mystery author (β
) and three candidate authors (β)
in the AA modelβs latent space.<br>
The grey β symbols represent the background corpusβreal authors with diverse writing styles.
You can zoom in on any region of the plot. The system will analyze the visible authors
in that area and list the most representative writing style features for the zoomed-in region.<br>
Use this to compare your mystery textβs position against nearby writing styles and
investigate which features distinguish it from others.
</p>
"""
gr.HTML(styled_html(expl_html))
cluster_dropdown = gr.Dropdown(choices=[], label="Select Cluster to Inspect", visible=False)
style_map_state = gr.State()
llm_style_feats_analysis = gr.State()
visible_zoomed_authors = gr.State()
if use_cluster_feats:
# ββ Dynamic Cluster Choice dropdown ββββββββββββββββββββββββββββββββββ
gr.HTML(instruction_callout("Choose a cluster from the dropdown below to inspect whether its features appear in the mystery authorβs text."))
cluster_dropdown.visible = True
else:
gr.HTML(instruction_callout("Zoom in on the plot to select a set of background authors and see the presence of the top features from this set in candidate and mystery authors."))
with gr.Row():
# ββ LLM Features Column ββββββββββββββββββββββββββββββββββ
with gr.Column(scale=1, min_width=0):
# gr.Markdown("**Features from the cluster closest to the Mystery Author**")
gr.HTML("""
<div style="
font-size: 1.3em;
font-weight: 600;
margin-bottom: 0.5em;
">
LLM-derived style features prominent in the zoomed-in region
</div>
""")
features_rb = gr.Radio(choices=[], label="LLM-derived style features for this zoomed-in region")#, label="Features from the cluster closest to the Mystery Author", info="LLM-derived style features for this cluster")
feature_list_state = gr.State()
# ββ Gram2Vec Features Column βββββββββββββββββββββββββββββ
with gr.Column(scale=1, min_width=0):
# gr.Markdown("**Top-10 Gram2Vec Features most likely to occur in Mystery Author**")
gr.HTML("""
<div style="
font-size: 1.3em;
font-weight: 600;
margin-bottom: 0.5em;
">
Gram2Vec Features prominent in the zoomed-in region
</div>
""")
gram2vec_rb = gr.Radio(choices=[], label="Gram2Vec features for this zoomed-in region")#, label="Top-10 Gram2Vec Features most likely to occur in Mystery Author", info="Most prominent Gram2Vec features in the mystery text")
gram2vec_state = gr.State()
# ββ Visualization button click βββββββββββββββββββββββββββββββ
run_btn.click(
fn=lambda iid, model_radio, custom_model_input, task_authors_embeddings_df, background_authors_embeddings_df, predicted_author, ground_truth_author: visualize_clusters_plotly(
int(iid.replace('Task ','')), cfg, instances, model_radio,
custom_model_input, task_authors_embeddings_df, background_authors_embeddings_df, predicted_author, ground_truth_author
),
inputs=[task_dropdown, model_radio, custom_model, task_authors_embeddings_df, background_authors_embeddings_df, predicted_author, ground_truth_author],
outputs=[plot, style_map_state, bg_proj_state, bg_lbls_state, bg_authors_df]
)
# Populate feature list based on selection.
if use_cluster_feats:
# Use cluster-based flow
cluster_dropdown.change(
fn=on_cluster_change,
inputs=[cluster_dropdown, style_map_state],
outputs=[features_rb, gram2vec_rb , feature_list_state]
#adding feature_list_state to persisit all llm features in the app state
)
else:
axis_ranges.change(
fn=handle_zoom_with_retries,
inputs=[axis_ranges, bg_proj_state, bg_lbls_state, bg_authors_df, task_authors_embeddings_df],
outputs=[features_rb, gram2vec_rb , llm_style_feats_analysis, feature_list_state, visible_zoomed_authors]
)
# ββ Show combined featureβspan highlights ββ
# combined callout + legend in one HTML block
gr.HTML(
instruction_callout(
"Click \"Show Combined Spans\" to highlight the LLM (yellow) & Gram2Vec (blue) feature spans in the texts"
)
+ """
<div style="
display: flex;
align-items: center;
justify-content: center;
gap: 2em;
margin-top: 0.5em;
font-size: 0.9em;
">
<div style="display: flex; align-items: center; gap: 0.5em; font-weight: 600; font-size: 1.5em;">
<span style="
display: inline-block;
width: 1.5em; height: 1.5em;
background: #FFEB3B; /* bright yellow */
border: 1px solid #666;
vertical-align: middle;
"></span>
LLM feature
</div>
<div style="display: flex; align-items: center; gap: 0.5em; font-weight: 600; font-size: 1.5em;">
<span style="
display: inline-block;
width: 1.5em; height: 1.5em;
background: #5CB3FF; /* clearer blue */
border: 1px solid #666;
vertical-align: middle;
"></span>
Gram2Vec feature
</div>
</div>
"""
)
combined_btn = gr.Button("Show Combined Spans")
combined_html = gr.HTML()
show_background_checkbox = gr.Checkbox(label="Show spans in background authors", value=False)
background_html = gr.HTML(visible=False)
# print(f"in app: all_feats={feature_list_state.value}")
# print(f"in app: sel_feat_llm={features_rb.value}")
combined_btn.click(
fn=show_combined_spans_all,
inputs=[features_rb,
gram2vec_rb,
llm_style_feats_analysis,
background_authors_embeddings_df,
task_authors_embeddings_df,
visible_zoomed_authors,
predicted_author,
ground_truth_author],
outputs=[combined_html, background_html]
)
# mapping -->
# iid = task_dropdown.value
# sel_feat_llm = features_rb.value
# all_feats = feature_list_state.value
# sel_feat_g2v = gram2vec_rb.value
# combined_html -> spans/html for task authors
# background_html -> spans/html for background authors
show_background_checkbox.change(
fn=lambda show: gr.update(visible=show),
inputs=[show_background_checkbox],
outputs=[background_html]
)
demo.launch(share=share)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--use_cluster_feats", action="store_true", help="Use cluster-based selection for features")
args = parser.parse_args()
app(share=True, use_cluster_feats=args.use_cluster_feats)
|