File size: 25,137 Bytes
3d73c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac7facf
3d73c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410e0af
 
e392716
410e0af
 
 
 
e392716
 
410e0af
e392716
 
 
 
 
 
 
 
 
 
 
 
 
 
3d73c8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import gradio as gr
import json


import os
os.environ["GRADIO_TEMP_DIR"] = "./datasets/temp"  # Set a custom temp directory for Gradio
os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True)

import yaml
import argparse
import os
import urllib.request
from tqdm import tqdm

from dotenv import load_dotenv  
from openai import OpenAI
from utils.file_download import download_file_override


def load_config(path="config/config.yaml"):
    with open(path, "r") as f:
        return yaml.safe_load(f)
    
cfg = load_config()


download_file_override(cfg.get('interp_space_url'), cfg.get('interp_space_path'))
download_file_override(cfg.get('instances_to_explain_url'), cfg.get('instances_to_explain_path'))
download_file_override(cfg.get('gram2vec_feats_url'), cfg.get('gram2vec_feats_path'))

from utils.visualizations import *
from utils.llm_feat_utils import *
from utils.gram2vec_feat_utils import *
from utils.interp_space_utils import *
from utils.ui import *

load_dotenv()
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))


# ── load once at startup ────────────────────────────────────────
GRAM2VEC_SHORTHAND = load_code_map()  

def validate_ground_truth(gt1, gt2, gt3):
    selected = [gt1, gt2, gt3]
    selected_count = sum(selected)

    if selected_count > 1:
        return None, "Please select only one ground truth author."
    elif selected_count == 0:
        return None, "No ground truth author selected."

    index = selected.index(True)
    return index, f"Candidate {index+1} is marked as the ground truth author."


def app(share=False, use_cluster_feats=False):
    instances, instance_ids = get_instances(cfg['instances_to_explain_path'])

    interp      = load_interp_space(cfg)
    clustered_authors_df = interp['clustered_authors_df'][:500]
    clustered_authors_df['fullText'] = clustered_authors_df['fullText'].map(lambda l: l[:3]) # Take at most 3 texts per author

    with gr.Blocks(title="Author Attribution Explainability Tool") as demo:
        # ── Big Centered Title ──────────────────────────────────────────
        gr.HTML(styled_block("""
        <h1 style="
            text-align:center;
            font-size:3em;      /* About 48px */
            margin-bottom:0.3em;
            font-weight:700;
        ">
            Author Attribution (AA) Explainability Tool
        </h1>
        """))

        gr.HTML(styled_block("""
        <div style="
            text-align:center;
            margin: 1em auto 2em auto;
            max-width:900px;
        ">
            <p style="font-size:1.3em; line-height:1.4;">
            This demo helps you <strong>see inside</strong> a deep AA model’s latent style space.
            </p>
            <p style="font-size:0.9em; line-height:1.4;">
            Currently you are inspecting <a href="https://huggingface.co/rrivera1849/LUAR-MUD">LUAR</a> with pre-defined AA tasks from the <a href="https://www.iarpa.gov/images/research-programs/HIATUS/IARPA_HIATUS_Phase_1_HRS_Data.to_DAC_20240610.pdf">HRS dataset </a> 
            </p>
            <div style="
            display:flex;
            justify-content:center;
            gap:3em;
            margin-top:1em;
            ">
            <!-- Visualize -->
            <div style="max-width:200px;">
                <div style="font-size:2em;">πŸ”</div>
                <h4 style="margin:0.2em 0;">Visualize</h4>
                <p style="margin:0; font-size:1em; line-height:1.3;">
                Place your AA task with respect to other background authors.
                </p>
            </div>
            <!-- GENERATE -->
            <div style="max-width:200px;">
                <div style="font-size:2em;">✏️</div>
                <h4 style="margin:0.2em 0;">Generate</h4>
                <p style="margin:0; font-size:1em; line-height:1.3;">
                Describe your investigated authors' writing style via human-readable LLM-generated style features.
                </p>
            </div>
            <!-- COMPARE -->
            <div style="max-width:200px;">
                <div style="font-size:2em;">βš–οΈ</div>
                <h4 style="margin:0.2em 0;">Compare</h4>
                <p style="margin:0; font-size:1em; line-height:1.3;">
                Contrast with <a href=""https://github.com/eric-sclafani/gram2vec>Gram2Vec</a> stylometric features.
                </p>
            </div>
            </div>
        </div>
        """))


        # ── Step-by-Step Guided Panel ──
        with gr.Accordion("πŸ“ How to Use", open=True):
            gr.Markdown("""
                    1. **Select** a model and a task source (pre-defined or custom)
                    2. Click **Load Task & Generate Embeddings** to load the task and generate embeddings
                    3. **Run Visualization** to see the mystery author and candidates in the AA model's latent space
                    4. **Zoom** into the visualization to select a cluster of background authors
                    5. Pick an **LLM feature** to highlight in yellow  
                    6. Pick a **Gram2Vec feature** to highlight in blue  
                    7. Click **Show Combined Spans** to compare side-by-side
                    """
            )

        # ── Model Selection ─────────────────────────────────
        model_radio = gr.Radio(
            choices=[
                'gabrielloiseau/LUAR-MUD-sentence-transformers',
                'gabrielloiseau/LUAR-CRUD-sentence-transformers',
                'miladalsh/light-luar',
                'AnnaWegmann/Style-Embedding',
                'Other'
            ],
            value='gabrielloiseau/LUAR-MUD-sentence-transformers',
            label='Choose a Model to inspect'
        )
        print(f"Model choices: {model_radio.choices}")
        print(f"Model default: {model_radio.value}")
        custom_model = gr.Textbox(
            label='Custom Model ID',
            placeholder='Enter your Hugging Face Model ID here',
            visible=False,
            interactive=True
        )
        # Show the textbox when 'Other' is selected
        model_radio.change(
            fn=toggle_custom_model,
            inputs=[model_radio],
            outputs=[custom_model]
        )

        # ── Task Source Selection ─────────────────────────────────
        task_mode = gr.Radio(
            choices=["Predefined HRS Task", "Upload Your Own Task"],
            value="Predefined HRS Task",
            label="Select Task Source"
        )

        ground_truth_author = gr.State()  # To store the index of the ground truth author

        with gr.Column():
            with gr.Column(visible=True) as predefined_container:
                gr.HTML("""
                    <div style="
                        font-size: 1.3em;
                        font-weight: 600;
                        margin-bottom: 0.5em;
                    ">
                        Pick a pre-defined task to investigate (a mystery text and its three candidate authors)
                    </div>
                    """)
                task_dropdown = gr.Dropdown(
                    choices=[f"Task {i}" for i in instance_ids],
                    value=f"Task {instance_ids[0]}",
                    label="Choose which mystery document to explain",
                )
            with gr.Column(visible=False) as custom_container:
                gr.HTML("""
                    <div style="
                        font-size: 1.3em;
                        font-weight: 600;
                        margin-bottom: 0.5em;
                    ">
                        Upload your own task
                    </div>
                    """)
                mystery_input   = gr.File(label="Mystery (.txt)", file_types=['.txt'])
                with gr.Row():
                    candidate1 = gr.File(label="Candidate 1 (.txt)", file_types=['.txt'])
                    gt1_checkbox = gr.Checkbox(label="Ground Truth?", value=False)

                with gr.Row():
                    candidate2 = gr.File(label="Candidate 2 (.txt)", file_types=['.txt'])
                    gt2_checkbox = gr.Checkbox(label="Ground Truth?", value=False)

                with gr.Row():
                    candidate3 = gr.File(label="Candidate 3 (.txt)", file_types=['.txt'])
                    gt3_checkbox = gr.Checkbox(label="Ground Truth?", value=False)
                
                validation_msg = gr.Textbox(label="Validation Result", interactive=False)
                
            for checkbox in [gt1_checkbox, gt2_checkbox, gt3_checkbox]:
                checkbox.change(
                    fn=validate_ground_truth,
                    inputs=[gt1_checkbox, gt2_checkbox, gt3_checkbox],
                    outputs=[ground_truth_author, validation_msg]
                )

        
        # ── Load Task Button ─────────────────────────────────────
        gr.HTML(instruction_callout("Click the button below to load the tasks and generate embeddings using selected model."))
        load_button = gr.Button("Load Task & Generate Embeddings")

        # ── HTML outputs for author texts ───────────────────────────
        default_outputs = load_instance(0, instances)
        #dont need defaults since they are loaded only on click of the load button
        header  = gr.HTML()
        mystery = gr.HTML()
        mystery_state = gr.State()  # Store unformatted mystery text for later use
        with gr.Row():
            c0 = gr.HTML()
            c1 = gr.HTML()
            c2 = gr.HTML()
            c0_state = gr.State()  # Store unformatted candidate 1 text for later use
            c1_state = gr.State()  # Store unformatted candidate 2 text for later use
            c2_state = gr.State()  # Store unformatted candidate 3 text for later use
        # ── State to hold embeddings DataFrame ─────────────────────
        task_authors_embeddings_df = gr.State()  # Store embeddings of task authors
        background_authors_embeddings_df = gr.State()  # Store background authors DataFrame
        task_mode.change(
            fn=toggle_task,
            inputs=[task_mode],
            outputs=[predefined_container, custom_container]
        )
        # ── Wire call to load task and generate embeddings once load button is clicked ───────────────────
        predicted_author = gr.State()  # Store predicted author from the embeddings
        load_button.click(
            fn=lambda: gr.update(value="⏳ Loading... Please wait", interactive=False),
            inputs=[],
            outputs=[load_button]
        ).then(
            fn=lambda mode, dropdown, mystery, c1, c2, c3, ground_truth_author, model_radio, custom_model_input: 
            update_task_display(
                mode,
                dropdown,
                instances,       # closed over
                clustered_authors_df,
                mystery,
                c1,
                c2,
                c3,
                ground_truth_author,            # true_author placeholder
                model_radio,
                custom_model_input
            ),
            inputs=[task_mode, task_dropdown, mystery_input, candidate1, candidate2, candidate3, ground_truth_author, model_radio, custom_model],
            outputs=[header, mystery, c0, c1, c2, mystery_state, c0_state, c1_state, c2_state, task_authors_embeddings_df, background_authors_embeddings_df, predicted_author, ground_truth_author]  # embeddings_df is a placeholder for now
        ).then(
            fn=lambda: gr.update(value="Load Task & Generate Embeddings", interactive=True),
            inputs=[],
            outputs=[load_button]
        )

        # ── Visualization for features ─────────────────────────────
        gr.HTML(instruction_callout("Run visualization to see which author is similar to the mystery document."))
        run_btn   = gr.Button("Run visualization")
        bg_proj_state = gr.State()
        bg_lbls_state = gr.State()
        bg_authors_df = gr.State()  # Holds the background authors DataFrame
        with gr.Row():
            with gr.Column(scale=3):
                # axis_ranges = gr.Textbox(visible=False, elem_id="axis-ranges")
                axis_ranges = gr.Textbox(
                    visible=True,  # Keep it visible to DOM
                    elem_id="axis-ranges",
                    interactive=True,
                    show_label=False,
                    container=False,
                    value="",
                    elem_classes=["hidden-textbox"]  # Add custom CSS class
                )

                # Add this CSS to hide it visually
                gr.HTML("""
                <style>
                .hidden-textbox {
                    position: absolute !important;
                    left: -9999px !important;
                    width: 1px !important;
                    height: 1px !important;
                    opacity: 0 !important;
                    pointer-events: none !important;
                }
                </style>
                """)
                plot = gr.Plot(
                    label="Visualization",
                    elem_id="feature-plot",
                )
                plot.change(
                    fn=None,
                    inputs=[plot],
                    outputs=[axis_ranges],
                    js="""
                    function(){
                        console.log("------------>[JS] plot.change() triggered<------------");

                        let attempts = 0;
                        const maxAttempts = 50;

                        const tryAttach = () => {
                            const gd = document.querySelector('#feature-plot .js-plotly-plot');
                            if (!gd) {
                                if (++attempts < maxAttempts) {
                                    requestAnimationFrame(tryAttach);
                                } else {
                                    console.error(" ------------>Could not find .js-plotly-plot after multiple attempts.<------------");
                                }
                                return;
                            }

                            if (gd.__zoomListenerAttached) {
                                console.log("------------>Zoom listener already attached.<------------");
                                return;
                            }

                            gd.__zoomListenerAttached = true;
                            console.log("------------>Zoom listener attached!<------------");

                            gd.on('plotly_relayout', (ev) => {
                                if (
                                    ev['xaxis.range[0]'] === undefined ||
                                    ev['xaxis.range[1]'] === undefined ||
                                    ev['yaxis.range[0]'] === undefined ||
                                    ev['yaxis.range[1]'] === undefined
                                ) return;

                                const payload = {
                                    xaxis: [ev['xaxis.range[0]'], ev['xaxis.range[1]']],
                                    yaxis: [ev['yaxis.range[0]'], ev['yaxis.range[1]']]
                                };

                                const txtbox = document.querySelector('#axis-ranges textarea');
                                if (txtbox) {
                                    txtbox.value = JSON.stringify(payload);
                                    txtbox.dispatchEvent(new Event('input', { bubbles: true }));
                                    console.log("------------> Zoom payload dispatched:<------------", payload);
                                } else {
                                    console.warn("------------> No hidden textbox found to write zoom payload.<------------");
                                }
                            });
                        };

                        requestAnimationFrame(tryAttach);
                        return '';
                    }
                    """
                )


            with gr.Column(scale=1):
                expl_html = """
                    <h4>What am I looking at?</h4>
                    <p>
                    This plot shows the mystery author (β˜…) and three candidate authors (β—†) 
                    in the AA model’s latent space.<br>
                    The grey ● symbols represent the background corpusβ€”real authors with diverse writing styles. 
                    You can zoom in on any region of the plot. The system will analyze the visible authors 
                    in that area and list the most representative writing style features for the zoomed-in region.<br>
                    Use this to compare your mystery text’s position against nearby writing styles and
                    investigate which features distinguish it from others.
                    </p>
                """
                gr.HTML(styled_html(expl_html))
        
        cluster_dropdown = gr.Dropdown(choices=[], label="Select Cluster to Inspect", visible=False)
        style_map_state = gr.State()
        llm_style_feats_analysis = gr.State()
        visible_zoomed_authors = gr.State()

        if use_cluster_feats:
            # ── Dynamic Cluster Choice dropdown ──────────────────────────────────
            gr.HTML(instruction_callout("Choose a cluster from the dropdown below to inspect whether its features appear in the mystery author’s text."))
            cluster_dropdown.visible = True
        else:
            gr.HTML(instruction_callout("Zoom in on the plot to select a set of background authors and see the presence of the top features from this set in candidate and mystery authors."))
           
        with gr.Row():
            # ── LLM Features Column ──────────────────────────────────
            with gr.Column(scale=1, min_width=0):
                # gr.Markdown("**Features from the cluster closest to the Mystery Author**")
                gr.HTML("""
                    <div style="
                        font-size: 1.3em;
                        font-weight: 600;
                        margin-bottom: 0.5em;
                    ">
                        LLM-derived style  features prominent in the zoomed-in region
                    </div>
                    """)
                features_rb = gr.Radio(choices=[], label="LLM-derived style features for this zoomed-in region")#, label="Features from the cluster closest to the Mystery Author", info="LLM-derived style features for this cluster")
                feature_list_state = gr.State() 

            # ── Gram2Vec Features Column ─────────────────────────────
            with gr.Column(scale=1, min_width=0):
                # gr.Markdown("**Top-10 Gram2Vec Features most likely to occur in Mystery Author**")
                gr.HTML("""
                    <div style="
                        font-size: 1.3em;
                        font-weight: 600;
                        margin-bottom: 0.5em;
                    ">
                        Gram2Vec Features prominent in the zoomed-in region
                    </div>
                    """)
                gram2vec_rb    = gr.Radio(choices=[], label="Gram2Vec features for this zoomed-in region")#, label="Top-10 Gram2Vec Features most likely to occur in Mystery Author", info="Most prominent Gram2Vec features in the mystery text")
                gram2vec_state = gr.State()

        # ── Visualization button click ───────────────────────────────
        run_btn.click(
            fn=lambda iid, model_radio, custom_model_input, task_authors_embeddings_df, background_authors_embeddings_df, predicted_author, ground_truth_author: visualize_clusters_plotly(
                int(iid.replace('Task ','')), cfg, instances, model_radio,
                custom_model_input, task_authors_embeddings_df, background_authors_embeddings_df, predicted_author, ground_truth_author
            ),
            inputs=[task_dropdown, model_radio, custom_model, task_authors_embeddings_df, background_authors_embeddings_df, predicted_author, ground_truth_author],
            outputs=[plot, style_map_state, bg_proj_state, bg_lbls_state, bg_authors_df]
        )
        
        # Populate feature list based on selection. 
        if use_cluster_feats:
            # Use cluster-based flow
            cluster_dropdown.change(
                fn=on_cluster_change,
                inputs=[cluster_dropdown, style_map_state],
                outputs=[features_rb, gram2vec_rb , feature_list_state] 
                #adding feature_list_state to persisit all llm features in the app state
            )
        else:

            axis_ranges.change(
                fn=handle_zoom_with_retries, 
                inputs=[axis_ranges, bg_proj_state, bg_lbls_state, bg_authors_df, task_authors_embeddings_df], 
                outputs=[features_rb, gram2vec_rb , llm_style_feats_analysis, feature_list_state, visible_zoomed_authors]
            )


        # ── Show combined feature‐span highlights ──
        # combined callout + legend in one HTML block
        gr.HTML(
            instruction_callout(
                "Click \"Show Combined Spans\" to highlight the LLM (yellow) & Gram2Vec (blue) feature spans in the texts"
            )
            + """
            <div style="
                display: flex;
                align-items: center;
                justify-content: center;
                gap: 2em;
                margin-top: 0.5em;
                font-size: 0.9em;
            ">
            <div style="display: flex; align-items: center; gap: 0.5em; font-weight: 600; font-size: 1.5em;">
                <span style="
                    display: inline-block;
                    width: 1.5em; height: 1.5em;
                    background: #FFEB3B;      /* bright yellow */
                    border: 1px solid #666;
                    vertical-align: middle;
                "></span>
                LLM feature
            </div>
            <div style="display: flex; align-items: center; gap: 0.5em; font-weight: 600; font-size: 1.5em;">
                <span style="
                    display: inline-block;
                    width: 1.5em; height: 1.5em;
                    background: #5CB3FF;      /* clearer blue */
                    border: 1px solid #666;
                    vertical-align: middle;
                "></span>
                Gram2Vec feature
            </div>
            </div>
            """
        )


        combined_btn  = gr.Button("Show Combined Spans")
        combined_html = gr.HTML()
        show_background_checkbox = gr.Checkbox(label="Show spans in background authors", value=False)
        background_html = gr.HTML(visible=False)
        # print(f"in app: all_feats={feature_list_state.value}")
        # print(f"in app: sel_feat_llm={features_rb.value}")


        combined_btn.click(
            fn=show_combined_spans_all,
            inputs=[features_rb, 
                    gram2vec_rb, 
                    llm_style_feats_analysis, 
                    background_authors_embeddings_df, 
                    task_authors_embeddings_df, 
                    visible_zoomed_authors, 
                    predicted_author, 
                    ground_truth_author],
            outputs=[combined_html, background_html]
        )
        # mapping -->
        # iid = task_dropdown.value
        # sel_feat_llm = features_rb.value
        # all_feats = feature_list_state.value
        # sel_feat_g2v = gram2vec_rb.value
        # combined_html -> spans/html for task authors
        # background_html -> spans/html for background authors

        show_background_checkbox.change(
            fn=lambda show: gr.update(visible=show),
            inputs=[show_background_checkbox],
            outputs=[background_html]
        )

    demo.launch(share=share)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--use_cluster_feats", action="store_true", help="Use cluster-based selection for features")
    args = parser.parse_args()
    app(share=True, use_cluster_feats=args.use_cluster_feats)