Commit
·
9e462c0
1
Parent(s):
bc6196e
Fix the api
Browse files- main.py +91 -14
- requirements.txt +7 -5
main.py
CHANGED
@@ -5,6 +5,12 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
import torch
|
7 |
import fitz # PyMuPDF
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
app = FastAPI(
|
10 |
title="AI Text Detection API",
|
@@ -21,44 +27,115 @@ app.add_middleware(
|
|
21 |
allow_headers=["*"],
|
22 |
)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Helper: Extract text from PDF
|
30 |
def extract_text_from_pdf(pdf_bytes):
|
31 |
try:
|
32 |
with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
|
33 |
return "".join([page.get_text() for page in doc]).strip()
|
34 |
-
except Exception:
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# AI detection endpoint
|
38 |
@app.post("/detect")
|
39 |
async def detect_ai(file: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
40 |
if not file.filename.lower().endswith(".pdf"):
|
41 |
raise HTTPException(status_code=400, detail="Only PDF files are accepted.")
|
42 |
|
43 |
try:
|
|
|
44 |
pdf_bytes = await file.read()
|
45 |
text = extract_text_from_pdf(pdf_bytes)
|
|
|
46 |
except Exception as e:
|
|
|
47 |
raise HTTPException(status_code=500, detail=str(e))
|
48 |
|
49 |
if not text:
|
50 |
raise HTTPException(status_code=400, detail="No readable text found in PDF.")
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
return {"ai_generated_percentage": ai_generated_percentage}
|
62 |
|
63 |
|
64 |
# from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
|
|
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
import torch
|
7 |
import fitz # PyMuPDF
|
8 |
+
import os
|
9 |
+
import logging
|
10 |
+
|
11 |
+
# Configure logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
|
15 |
app = FastAPI(
|
16 |
title="AI Text Detection API",
|
|
|
27 |
allow_headers=["*"],
|
28 |
)
|
29 |
|
30 |
+
# Set cache directory to a writable location within the container
|
31 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
|
32 |
+
os.environ["HF_HOME"] = "/tmp/hf_home"
|
33 |
+
|
34 |
+
# Load model and tokenizer with proper error handling
|
35 |
+
# Using a dedicated AI text detection model
|
36 |
+
MODEL_NAME = "Hello-SimpleAI/chatgpt-detector-roberta" # A fine-tuned model for detecting AI-generated text
|
37 |
+
tokenizer = None
|
38 |
+
model = None
|
39 |
+
|
40 |
+
try:
|
41 |
+
logger.info(f"Loading model and tokenizer: {MODEL_NAME}")
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir="/tmp/transformers_cache")
|
43 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, cache_dir="/tmp/transformers_cache")
|
44 |
+
logger.info("Model and tokenizer loaded successfully")
|
45 |
+
except Exception as e:
|
46 |
+
logger.error(f"Error loading model: {str(e)}")
|
47 |
+
# Fallback to another model if the first one fails
|
48 |
+
try:
|
49 |
+
FALLBACK_MODEL = "roberta-base-openai-detector"
|
50 |
+
logger.info(f"Trying fallback model: {FALLBACK_MODEL}")
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(FALLBACK_MODEL, cache_dir="/tmp/transformers_cache")
|
52 |
+
model = AutoModelForSequenceClassification.from_pretrained(FALLBACK_MODEL, cache_dir="/tmp/transformers_cache")
|
53 |
+
logger.info("Fallback model loaded successfully")
|
54 |
+
except Exception as e2:
|
55 |
+
logger.error(f"Error loading fallback model: {str(e2)}")
|
56 |
+
raise RuntimeError(f"Failed to load models: {str(e)} and {str(e2)}")
|
57 |
|
58 |
# Helper: Extract text from PDF
|
59 |
def extract_text_from_pdf(pdf_bytes):
|
60 |
try:
|
61 |
with fitz.open(stream=pdf_bytes, filetype="pdf") as doc:
|
62 |
return "".join([page.get_text() for page in doc]).strip()
|
63 |
+
except Exception as e:
|
64 |
+
logger.error(f"PDF extraction error: {str(e)}")
|
65 |
+
raise RuntimeError(f"Failed to read PDF content: {str(e)}")
|
66 |
+
|
67 |
+
# Health check endpoint
|
68 |
+
@app.get("/")
|
69 |
+
async def health_check():
|
70 |
+
return {
|
71 |
+
"status": "ok",
|
72 |
+
"model_loaded": model is not None and tokenizer is not None,
|
73 |
+
"model_name": MODEL_NAME
|
74 |
+
}
|
75 |
|
76 |
# AI detection endpoint
|
77 |
@app.post("/detect")
|
78 |
async def detect_ai(file: UploadFile = File(...)):
|
79 |
+
# Check if model is loaded
|
80 |
+
if model is None or tokenizer is None:
|
81 |
+
raise HTTPException(status_code=503, detail="Model is not loaded. Please check server logs.")
|
82 |
+
|
83 |
if not file.filename.lower().endswith(".pdf"):
|
84 |
raise HTTPException(status_code=400, detail="Only PDF files are accepted.")
|
85 |
|
86 |
try:
|
87 |
+
logger.info(f"Processing file: {file.filename}")
|
88 |
pdf_bytes = await file.read()
|
89 |
text = extract_text_from_pdf(pdf_bytes)
|
90 |
+
logger.info(f"Extracted {len(text)} characters from PDF")
|
91 |
except Exception as e:
|
92 |
+
logger.error(f"Error processing PDF: {str(e)}")
|
93 |
raise HTTPException(status_code=500, detail=str(e))
|
94 |
|
95 |
if not text:
|
96 |
raise HTTPException(status_code=400, detail="No readable text found in PDF.")
|
97 |
|
98 |
+
try:
|
99 |
+
# Split text into chunks if it's very long (transformers has a token limit)
|
100 |
+
text_chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
101 |
+
|
102 |
+
# Process each chunk and average the results
|
103 |
+
ai_scores = []
|
104 |
+
for chunk in text_chunks[:10]: # Limit to first 10 chunks to avoid timeouts
|
105 |
+
if not chunk.strip():
|
106 |
+
continue
|
107 |
+
|
108 |
+
inputs = tokenizer(chunk, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
109 |
+
|
110 |
+
with torch.no_grad():
|
111 |
+
outputs = model(**inputs)
|
112 |
+
logits = outputs.logits
|
113 |
+
|
114 |
+
# Get probabilities - models typically output [human_prob, ai_prob]
|
115 |
+
probs = torch.softmax(logits, dim=1).squeeze().tolist()
|
116 |
+
|
117 |
+
# Check if it's a single value or list (depends on model output format)
|
118 |
+
if isinstance(probs, list):
|
119 |
+
# Most AI detection models output [human_prob, ai_prob]
|
120 |
+
ai_prob = probs[1] if len(probs) > 1 else probs[0]
|
121 |
+
else:
|
122 |
+
# Single value models typically output AI probability directly
|
123 |
+
ai_prob = probs
|
124 |
+
|
125 |
+
ai_scores.append(ai_prob * 100)
|
126 |
+
|
127 |
+
# Calculate average AI probability across chunks
|
128 |
+
if ai_scores:
|
129 |
+
avg_ai_score = sum(ai_scores) / len(ai_scores)
|
130 |
+
logger.info(f"AI detection complete: {avg_ai_score:.2f}%")
|
131 |
+
return {"ai_generated_percentage": round(avg_ai_score, 2)}
|
132 |
+
else:
|
133 |
+
raise HTTPException(status_code=400, detail="Could not analyze text content.")
|
134 |
|
135 |
+
except Exception as e:
|
136 |
+
logger.error(f"Error during AI detection: {str(e)}")
|
137 |
+
raise HTTPException(status_code=500, detail=f"Error analyzing text: {str(e)}")
|
138 |
|
|
|
139 |
|
140 |
|
141 |
# from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
|
requirements.txt
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
# requirements.txt
|
2 |
|
3 |
-
fastapi
|
4 |
-
uvicorn
|
5 |
-
transformers
|
6 |
-
torch
|
7 |
-
|
|
|
|
|
8 |
|
9 |
# --extra-index-url https://download.pytorch.org/whl/cpu
|
10 |
# fastapi==0.103.2
|
|
|
1 |
# requirements.txt
|
2 |
|
3 |
+
fastapi>=0.95.0
|
4 |
+
uvicorn>=0.21.1
|
5 |
+
transformers>=4.28.0
|
6 |
+
torch>=2.0.0
|
7 |
+
PyMuPDF>=1.22.0
|
8 |
+
python-multipart>=0.0.6
|
9 |
+
|
10 |
|
11 |
# --extra-index-url https://download.pytorch.org/whl/cpu
|
12 |
# fastapi==0.103.2
|