COM ADMIN
commited on
Commit
·
6d7d004
1
Parent(s):
2754062
Fix inaccurate API results
Browse files- Dockerfile +10 -19
- main.py +49 -21
Dockerfile
CHANGED
@@ -1,34 +1,25 @@
|
|
1 |
-
# Base image (Python 3.9 is recommended for Spaces)
|
2 |
FROM python:3.9-slim
|
3 |
|
4 |
-
#
|
5 |
-
ENV PYTHONDONTWRITEBYTECODE=1 \
|
6 |
-
PYTHONUNBUFFERED=1 \
|
7 |
-
TRANSFORMERS_CACHE=/tmp/.cache
|
8 |
-
|
9 |
-
# Install system dependencies (required for PyMuPDF)
|
10 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
11 |
libgl1 \
|
12 |
libglib2.0-0 \
|
13 |
-
&& rm -rf /var/lib/apt/lists/*
|
|
|
14 |
|
15 |
-
#
|
16 |
WORKDIR /app
|
17 |
-
|
18 |
-
# Copy requirements first (for caching)
|
19 |
COPY requirements.txt .
|
20 |
-
|
21 |
-
# Install Python dependencies
|
22 |
RUN pip install --no-cache-dir -r requirements.txt
|
23 |
|
24 |
-
# Download NLTK data
|
25 |
-
RUN python -m nltk.downloader punkt
|
26 |
|
27 |
-
# Copy
|
28 |
COPY . .
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
|
33 |
-
|
34 |
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|
|
|
|
|
1 |
FROM python:3.9-slim
|
2 |
|
3 |
+
# Install system dependencies + NLTK data
|
|
|
|
|
|
|
|
|
|
|
4 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
5 |
libgl1 \
|
6 |
libglib2.0-0 \
|
7 |
+
&& rm -rf /var/lib/apt/lists/* \
|
8 |
+
&& mkdir -p /usr/share/nltk_data
|
9 |
|
10 |
+
# Install Python dependencies first (for caching)
|
11 |
WORKDIR /app
|
|
|
|
|
12 |
COPY requirements.txt .
|
|
|
|
|
13 |
RUN pip install --no-cache-dir -r requirements.txt
|
14 |
|
15 |
+
# Download NLTK data to persistent directory
|
16 |
+
RUN python -m nltk.downloader -d /usr/share/nltk_data punkt
|
17 |
|
18 |
+
# Copy application code
|
19 |
COPY . .
|
20 |
|
21 |
+
# Set NLTK data path environment variable
|
22 |
+
ENV NLTK_DATA=/usr/share/nltk_data
|
23 |
|
24 |
+
EXPOSE 7860
|
25 |
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|
main.py
CHANGED
@@ -12,6 +12,7 @@ import nltk
|
|
12 |
from nltk.tokenize import sent_tokenize
|
13 |
from typing import List, Tuple
|
14 |
import re
|
|
|
15 |
|
16 |
# Configure logging
|
17 |
logging.basicConfig(level=logging.INFO)
|
@@ -19,6 +20,20 @@ logger = logging.getLogger(__name__)
|
|
19 |
|
20 |
app = FastAPI()
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
app.add_middleware(
|
23 |
CORSMiddleware,
|
24 |
allow_origins=["*"],
|
@@ -35,6 +50,11 @@ MIN_TEXT_LENGTH = 150 # Minimum characters to consider as valid text
|
|
35 |
MAX_TEXT_LENGTH = 10000 # Maximum characters to process for performance
|
36 |
PLAGIARISM_THRESHOLD = 0.75 # Similarity threshold for plagiarism detection
|
37 |
|
|
|
|
|
|
|
|
|
|
|
38 |
# Load models at startup
|
39 |
try:
|
40 |
ai_detector = pipeline(
|
@@ -81,25 +101,29 @@ def compute_embeddings(sentences: List[str]) -> np.ndarray:
|
|
81 |
|
82 |
def check_internal_plagiarism(text: str) -> Tuple[float, bool]:
|
83 |
"""Check for internal plagiarism and return score + flag."""
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
return round(avg_similarity * 100, 2), plagiarism_detected
|
103 |
|
104 |
def chunk_text(text: str, chunk_size: int = CHUNK_SIZE) -> List[str]:
|
105 |
"""Split text into chunks for processing."""
|
@@ -136,11 +160,15 @@ async def detect_ai_content(file: UploadFile = File(...)):
|
|
136 |
plagiarism_score, plagiarism_detected = check_internal_plagiarism(text)
|
137 |
logger.info(f"AI score: {ai_score:.2%}, Plagiarism score: {plagiarism_score}%")
|
138 |
|
139 |
-
# Step 4: Return response
|
140 |
-
return {
|
|
|
|
|
|
|
141 |
|
142 |
except HTTPException:
|
143 |
raise
|
144 |
except Exception as e:
|
145 |
logger.error(f"Detection error: {str(e)}", exc_info=True)
|
146 |
-
raise HTTPException(500, "Analysis failed")
|
|
|
|
12 |
from nltk.tokenize import sent_tokenize
|
13 |
from typing import List, Tuple
|
14 |
import re
|
15 |
+
import os
|
16 |
|
17 |
# Configure logging
|
18 |
logging.basicConfig(level=logging.INFO)
|
|
|
20 |
|
21 |
app = FastAPI()
|
22 |
|
23 |
+
# Initialize NLTK data path
|
24 |
+
NLTK_DATA_PATH = "/usr/share/nltk_data"
|
25 |
+
os.makedirs(NLTK_DATA_PATH, exist_ok=True)
|
26 |
+
nltk.data.path.append(NLTK_DATA_PATH)
|
27 |
+
|
28 |
+
# Ensure punkt tokenizer is available
|
29 |
+
try:
|
30 |
+
nltk.data.find('tokenizers/punkt')
|
31 |
+
logger.info("NLTK punkt tokenizer available")
|
32 |
+
except LookupError:
|
33 |
+
logger.info("Downloading NLTK punkt tokenizer...")
|
34 |
+
nltk.download('punkt', download_dir=NLTK_DATA_PATH)
|
35 |
+
nltk.data.path.append(NLTK_DATA_PATH)
|
36 |
+
|
37 |
app.add_middleware(
|
38 |
CORSMiddleware,
|
39 |
allow_origins=["*"],
|
|
|
50 |
MAX_TEXT_LENGTH = 10000 # Maximum characters to process for performance
|
51 |
PLAGIARISM_THRESHOLD = 0.75 # Similarity threshold for plagiarism detection
|
52 |
|
53 |
+
# Health check endpoint
|
54 |
+
@app.get("/health")
|
55 |
+
def health_check():
|
56 |
+
return {"status": "healthy"}
|
57 |
+
|
58 |
# Load models at startup
|
59 |
try:
|
60 |
ai_detector = pipeline(
|
|
|
101 |
|
102 |
def check_internal_plagiarism(text: str) -> Tuple[float, bool]:
|
103 |
"""Check for internal plagiarism and return score + flag."""
|
104 |
+
try:
|
105 |
+
sentences = [s for s in sent_tokenize(text) if len(s.split()) > 5] # Filter very short sentences
|
106 |
+
if len(sentences) < 2:
|
107 |
+
return 0.0, False
|
108 |
+
|
109 |
+
embeddings = compute_embeddings(sentences)
|
110 |
+
sim_matrix = cosine_similarity(embeddings)
|
111 |
+
np.fill_diagonal(sim_matrix, 0) # Ignore self-similarity
|
112 |
+
|
113 |
+
# Get top 5% most similar pairs
|
114 |
+
n = len(sim_matrix)
|
115 |
+
if n == 0:
|
116 |
+
return 0.0, False
|
117 |
+
|
118 |
+
top_k = max(1, int(0.05 * n * (n - 1) / 2)) # 5% of possible pairs
|
119 |
+
top_indices = np.argpartition(sim_matrix.flatten(), -top_k)[-top_k:]
|
120 |
+
avg_similarity = np.mean(sim_matrix.flatten()[top_indices])
|
121 |
|
122 |
+
plagiarism_detected = avg_similarity > PLAGIARISM_THRESHOLD
|
123 |
+
return round(avg_similarity * 100, 2), plagiarism_detected
|
124 |
+
except Exception as e:
|
125 |
+
logger.error(f"Plagiarism check failed: {str(e)}")
|
126 |
+
return 0.0, False
|
|
|
127 |
|
128 |
def chunk_text(text: str, chunk_size: int = CHUNK_SIZE) -> List[str]:
|
129 |
"""Split text into chunks for processing."""
|
|
|
160 |
plagiarism_score, plagiarism_detected = check_internal_plagiarism(text)
|
161 |
logger.info(f"AI score: {ai_score:.2%}, Plagiarism score: {plagiarism_score}%")
|
162 |
|
163 |
+
# Step 4: Return response
|
164 |
+
return {
|
165 |
+
"ai_generated_percentage": round(ai_score * 100, 2),
|
166 |
+
"plagiarism_risk": plagiarism_detected
|
167 |
+
}
|
168 |
|
169 |
except HTTPException:
|
170 |
raise
|
171 |
except Exception as e:
|
172 |
logger.error(f"Detection error: {str(e)}", exc_info=True)
|
173 |
+
raise HTTPException(500, f"Analysis failed: {str(e)}")
|
174 |
+
|