File size: 6,601 Bytes
effc62f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4885d74
 
effc62f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5f67d6
effc62f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4885d74
effc62f
4885d74
effc62f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# frontend.py
"""
Streamlit frontend for MCP Agent
Provides a chat interface for interacting with the MCP backend
"""

import streamlit as st
import asyncio
from backend import get_agent, MCPAgent
import time

# Page configuration
st.set_page_config(
    page_title="MCP Agent Chat",
    page_icon="πŸ€–",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better chat appearance
st.markdown("""
<style>
    .stChatMessage {
        padding: 1rem;
        border-radius: 0.5rem;
        margin-bottom: 1rem;
    }
    .user-message {
        background-color: #e3f2fd;
    }
    .assistant-message {
        background-color: #f5f5f5;
    }
    .sidebar-info {
        padding: 1rem;
        background-color: #f0f2f6;
        border-radius: 0.5rem;
        margin-bottom: 1rem;
    }
</style>
""", unsafe_allow_html=True)

# Initialize session state
if "messages" not in st.session_state:
    st.session_state.messages = []
    st.session_state.history = []  # For agent history
    st.session_state.agent_initialized = False
    st.session_state.available_tools = []
    st.session_state.pending_query = None  # For example queries

# Sidebar
with st.sidebar:
    st.title("πŸ€– MCP Agent")
    st.markdown("---")
    
    # Status indicator
    if st.session_state.agent_initialized:
        st.success("βœ… Agent Connected")
        
        # Show available tools
        st.markdown("### πŸ› οΈ Available Tools")
        available_tools = st.session_state.get("available_tools", [])
        for tool in available_tools:
            st.markdown(f"β€’ `{tool}`")
    else:
        st.info("⏳ Agent Initializing...")
    
    st.markdown("---")
    
    # Example queries
    st.markdown("### πŸ’‘ Example Queries")
    example_queries = [
        "What's the price of AAPL?",
        "Show me the market summary",
        "Get news about TSLA",
        "Calculate 25 * 4",
        "What's 100 divided by 7?",
        "Add 456 and 789"
    ]
    
    for query in example_queries:
        if st.button(query, key=f"example_{query}"):
            st.session_state.pending_query = query
            st.rerun()
    
    st.markdown("---")
    
    # Clear chat button
    if st.button("πŸ—‘οΈ Clear Chat", type="secondary"):
        st.session_state.messages = []
        st.session_state.history = []
        st.rerun()
    
    # Info section
    st.markdown("### ℹ️ About")
    st.markdown("""
    This chat interface connects to:
    - **Math Server**: Basic arithmetic operations
    - **Stock Server**: Real-time market data
    
    The agent uses LangChain and MCP to intelligently route your queries to the appropriate tools.
    """)

# Main chat interface
st.title("πŸ’¬ MCP Agent Chat")
st.markdown("Ask me about stocks, math calculations, or general questions!")

# Initialize agent asynchronously
async def initialize_agent():
    """Initialize the agent if not already done"""
    if not st.session_state.agent_initialized:
        agent = get_agent()
        with st.spinner("πŸ”§ Initializing MCP servers..."):
            try:
                tools = await agent.initialize()
                st.session_state.available_tools = tools
                st.session_state.agent_initialized = True
                return True
            except Exception as e:
                st.error(f"Failed to initialize agent: {str(e)}")
                st.info("Please make sure the stock server is running: `python stock_server.py`")
                return False
    return True

# Process user message
async def process_user_message(user_input: str):
    """Process the user's message and get response from agent"""
    agent = get_agent()
    
    # Add user message to history
    st.session_state.history.append({"role": "user", "content": user_input})
    
    try:
        # Get response from agent
        response = await agent.process_message(user_input, st.session_state.history)
        
        # Add assistant response to history
        st.session_state.history.append({"role": "assistant", "content": response})
        
        return response
    except Exception as e:
        return f"Error: {str(e)}"

# Display chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Process pending query from example buttons
if st.session_state.pending_query:
    query = st.session_state.pending_query
    st.session_state.pending_query = None  # Clear it
    
    # Add to messages
    st.session_state.messages.append({"role": "user", "content": query})
    
    # Process the query
    async def process_example():
        if not st.session_state.agent_initialized:
            if not await initialize_agent():
                return "Failed to initialize agent. Please check the servers."
        return await process_user_message(query)
    
    # Get response
    with st.spinner("Processing..."):
        response = asyncio.run(process_example())
    
    # Add response to messages
    st.session_state.messages.append({"role": "assistant", "content": response})
    
    # Rerun to display the new messages
    st.rerun()

# Chat input
if prompt := st.chat_input("Type your message here..."):
    # Add user message to chat
    st.session_state.messages.append({"role": "user", "content": prompt})
    
    # Display user message
    with st.chat_message("user"):
        st.markdown(prompt)
    
    # Get and display assistant response
    with st.chat_message("assistant"):
        message_placeholder = st.empty()
        
        # Run async function
        async def get_response():
            # Initialize agent if needed
            if not st.session_state.agent_initialized:
                if not await initialize_agent():
                    return "Failed to initialize agent. Please check the servers."
            
            # Process message
            return await process_user_message(prompt)
        
        # Execute async function
        with st.spinner("Thinking..."):
            response = asyncio.run(get_response())
        
        message_placeholder.markdown(response)
        st.session_state.messages.append({"role": "assistant", "content": response})

# Auto-initialize agent on first load
if not st.session_state.agent_initialized:
    with st.spinner("πŸ”§ Initializing agent..."):
        asyncio.run(initialize_agent())

# Footer
st.markdown("---")
st.markdown(
    """
    <div style='text-align: center; color: #666;'>
    Powered by LangChain, MCP, and Hugging Face πŸ€—
    </div>
    """,
    unsafe_allow_html=True
)