Delete app backup 2.py
Browse files- app backup 2.py +0 -103
app backup 2.py
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from streamlit_chat import message
|
3 |
-
from langchain_openai import ChatOpenAI
|
4 |
-
from langchain.chains import ConversationChain
|
5 |
-
from langchain.chains.conversation.memory import (ConversationBufferMemory,
|
6 |
-
ConversationSummaryMemory,
|
7 |
-
ConversationBufferWindowMemory
|
8 |
-
|
9 |
-
)
|
10 |
-
|
11 |
-
if 'conversation' not in st.session_state:
|
12 |
-
st.session_state['conversation'] =None
|
13 |
-
if 'messages' not in st.session_state:
|
14 |
-
st.session_state['messages'] =[]
|
15 |
-
if 'API_Key' not in st.session_state:
|
16 |
-
st.session_state['API_Key'] =''
|
17 |
-
|
18 |
-
# Setting page title and header
|
19 |
-
st.set_page_config(page_title="ChatMate: Your Professional AI Conversation Partner Solution", page_icon=":robot_face:")
|
20 |
-
st.markdown("<h1 style='text-align: center; color: navy;'>ChatMate</h1>", unsafe_allow_html=True)
|
21 |
-
st.markdown("<h4 style='text-align: center;'>A cutting-edge language model</h4>", unsafe_allow_html=True)
|
22 |
-
st.markdown("<p style='text-align: right'>By <a href='https://entzyeung.github.io/portfolio/index.html'>Lorentz Yeung</a></p>", unsafe_allow_html=True)
|
23 |
-
|
24 |
-
st.markdown("<p style='text-align: left;'>I am capable of recalling previous parts of our conversation, such as remembering your name if you share it with me.</p>", unsafe_allow_html=True)
|
25 |
-
st.session_state['API_Key']= st.text_input("First, to get it work, put your OpenAI API Key here please, the system will enter for you automatically.",type="password")
|
26 |
-
st.markdown("<p style='text-align: left;'>Then Tell me how I can help:</p>", unsafe_allow_html=True)
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# API Keys
|
31 |
-
# st.sidebar.text_input() will automatically update st.session_state['API_Key'] with the input value whenever the user types into the field.
|
32 |
-
st.sidebar.title("Introduction")
|
33 |
-
st.sidebar.markdown("""
|
34 |
-
ChatMate is an advanced conversational AI interface, expertly crafted to demonstrate the fusion of Streamlit's user-friendly design and OpenAI's powerful GPT-3.5 model. Here are its highlights:
|
35 |
-
|
36 |
-
<ul style='text-align: left;'>
|
37 |
-
<li><strong>Intuitive Interface</strong>: Built with Streamlit, ChatMate offers a clean, responsive user experience, allowing for natural dialogue with the AI.</li>
|
38 |
-
<li><strong>Advanced NLP</strong>: Incorporating OpenAI's most advanced GPT model, the app provides nuanced understanding and generation of human-like text, showcasing the model's impressive capabilities.</li>
|
39 |
-
<li><strong>State Management</strong>: Utilizes <code>ConversationChain</code> and <code>ConversationMemory</code> from <code>langchain</code> to preserve the context and flow, ensuring coherent and engaging interactions.</li>
|
40 |
-
<li><strong>Python Proficiency</strong>: The app's robust backend, written in Python, reflects the data scientist’s adeptness in programming and system design.</li>
|
41 |
-
<li><strong>Secure Interaction</strong>: Streamlit's session state management is used for secure API key handling and user input retention across sessions.</li>
|
42 |
-
</ul>
|
43 |
-
|
44 |
-
ChatMate is developed by Lorentz Yeung
|
45 |
-
""", unsafe_allow_html=True)
|
46 |
-
|
47 |
-
#st.session_state['API_Key']= st.sidebar.text_input("Put your OpenAI API Key here please, the system will enter for you automatically.",type="password")
|
48 |
-
|
49 |
-
# summarise_button = st.sidebar.button("Summarise the conversation", key="summarise")
|
50 |
-
#if summarise_button:
|
51 |
-
# summarise_placeholder = st.sidebar.write("Nice chatting with you my friend ❤️")
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
# Function to get response from the model
|
56 |
-
def getresponse(userInput, api_key):
|
57 |
-
|
58 |
-
if st.session_state['conversation'] is None:
|
59 |
-
|
60 |
-
llm = ChatOpenAI(
|
61 |
-
temperature=0,
|
62 |
-
openai_api_key=api_key,
|
63 |
-
model_name='gpt-3.5-turbo'
|
64 |
-
)
|
65 |
-
|
66 |
-
st.session_state['conversation'] = ConversationChain(
|
67 |
-
llm=llm,
|
68 |
-
verbose=True,
|
69 |
-
memory=ConversationSummaryMemory(llm=llm)
|
70 |
-
)
|
71 |
-
|
72 |
-
response=st.session_state['conversation'].predict(input=userInput)
|
73 |
-
print(st.session_state['conversation'].memory.buffer)
|
74 |
-
|
75 |
-
|
76 |
-
return response
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
response_container = st.container()
|
81 |
-
# Here we will have a container for user input text box
|
82 |
-
container = st.container()
|
83 |
-
|
84 |
-
# User input and response display
|
85 |
-
with container:
|
86 |
-
with st.form(key='my_form', clear_on_submit=True):
|
87 |
-
user_input = st.text_area("Ask me questions please", key='input', height=100)
|
88 |
-
submit_button = st.form_submit_button(label='Send')
|
89 |
-
|
90 |
-
if submit_button:
|
91 |
-
st.session_state['messages'].append(user_input)
|
92 |
-
model_response=getresponse(user_input,st.session_state['API_Key'])
|
93 |
-
st.session_state['messages'].append(model_response)
|
94 |
-
|
95 |
-
|
96 |
-
with response_container:
|
97 |
-
for i in range(len(st.session_state['messages'])):
|
98 |
-
if (i % 2) == 0:
|
99 |
-
message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user')
|
100 |
-
else:
|
101 |
-
message(st.session_state['messages'][i], key=str(i) + '_AI')
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|